Abstract:
The present invention relates to a method of patterning molecules on a substrate using a micro-contact printing process, to a substrate produced by said method and to uses of said substrate. It also relates to a device for performing the method according to the present invention.
Abstract:
A method of applying a pattern of metal, metal oxide, and/or semiconductor material on a substrate, a pattern created by that method, and uses of that pattern.
Abstract:
The invention describes a device as well as a method for eliminating vibrations of a mechanical structure with at least one electromechanical converter material that is actively connected to the mechanical structure and connected to an electric circuit arrangement with at least one electrical impedance. The invention is characterized in that the electric circuit is connected to an interface, via which the at least one electrical impedance can be variably adjusted by means of wireless or wired communication with a control unit that is separated from the electronic circuit arrangement, and in that the electrical impedance features at least one ohmic resistor and/or one inductive resistor and/or one capacitor that are respectively realized variably.
Abstract:
A method and associated substrate is provided for applying a layer or pattern of metal on a substrate. The method includes providing a target substrate, immobilizing a layer of polymeric material on the target substrate, and applying and immobilizing a layer or pattern of metal on the layer of polymeric material on the target substrate using a stamp onto which the layer or pattern of metal has previously been applied, by bringing the stamp into conformal contact with the target substrate.
Abstract:
An electrode array for the cyclic reduction and oxidation of a redox species in an electrolyte, wherein both electrodes are disposed on an insulating substrate and connected to a counter electrode for the application of a voltage, comprising: 1) a control electrode for reacting the redox species for cyclic electron transport between the electrodes: and b) a collector electrode disposed opposite the control electrode, wherein a layer structure composed of a second insulator and a charge transfer mediator disposed thereon is additionally disposed on the side of the collector electrode located opposite the insulating substrate for reacting the redox species Two methods for operating the electrode array are disclosed.
Abstract:
A sensor array for measuring the deformation of an area caused by a force, comprises a first strip and a second strip arranged in the same plane on the area so as to form a tunnel junction of which at least the first strip is movably arranged on the area so that the gap between the two strips is increased when the area is deformed as a result of the action of the force.
Abstract:
The invention relates to a method of 13C-MR imaging, 13C-MR spectroscopy and/or 13C-MR spectroscopic imaging of inflammation or infection using an imaging medium which comprises a hyperpolarized 13C-substance.
Abstract:
The invention is a device for influencing the vibration of a planar element having two opposite surfaces and a neutral fiber plane running between the two surfaces including at least one actuator and at least one sensor which each are provided with transducer materials and are connected to at least one electronic component or an electronic module. The at least one actuator and at least one sensor are completely integrated into the planar element so as to be spaced from the two surfaces as well as from the neutral fiber plane.
Abstract:
Magnetic resonance imaging (MRI) is enhanced by contrast agents such as superparamagnetic iron-oxide (SPIO) particles that resemble magnetite particles produced by magnetotactic bacteria. Magnetospirillum magneticum AMB-1 produces positive MRI contrast when generating ultrasmall magnetite particles (10-40 nm diameter). Positive MRI contrast permits clearer distinction from image voids compared to negative contrast. T1-weighted MRI showed that such bacteria increased positive contrast 2.2-fold (p