Abstract:
An improved front type of automatic paper feeding apparatus having a paper aligning device for preventing a skewing of a paper to be fed. In the front loading type of automatic paper feeding apparatus including a paper storing and separating section for storing paper to be fed and for separating sheets of paper one by one; a cam device for raising and lowering the paper storing and separating section; and a feeding section having a feed roller which rotates to separate a sheet of paper from the paper storing and separating section and to convey the separated sheet of paper to a printing position, the automatic paper feeding apparatus for preventing paper skew further includes an aligning roller for aligning the paper by pushing the paper stored in the paper storing and separating unit to a paper feeding position, the aligning roller pivoting in contact with the paper for paper aligning before the feed roller comes into contact with the paper; a slip section formed of a slip gear which is disposed on the aligning roller shaft for providing a rotational force to the aligning roller; a feed gear for providing a driving force to the slip gear; a holder lever for pivoting the feed roller, the holder lever on which the slip gear and aligning roller are disposed to variably perform the paper aligning operation and pickup operation; and an elastic member opposed to the aligning roller, for providing a certain force to the aligning roller for the paper aligning operation.
Abstract:
Disclosed herein is a fuel injection valve for an internal combustion engine. The fuel injection valve includes a valve body (10), a nozzle (20), a valve plate (30), a main needle spindle (40), a main needle (50), a main needle spring (60), a spring plate (70), a pilot needle spring (80), a pilot needle spindle (90) and a pilot needle (100). In the present invention, both the main needle and the pilot needle are opened or only the pilot needle is opened by compressed high-pressure fuel oil or compressed air, thereby enabling main injection and pilot injection to be separately performed by the single fuel-injection valve. Furthermore, because opening of the main needle valve can be controlled by compressed air for ignition or control of an engine, only the pilot injection may be conducted even without using a separate compression apparatus or the like.
Abstract:
A method of forming a plurality of multi-layer organic films in a single process includes preparing a first evaporating source that evaporates a first evaporating source material onto a first deposition region and a second evaporating source that evaporates a second evaporating source material onto a second deposition region, wherein the first evaporating source material and the second evaporating source material are different from each other, adjusting the first evaporating source and the second evaporating source in order to obtain a first overlapping region in which the first deposition region and the second deposition region overlap each other, driving the first evaporating source and the second evaporating source to deposit the first evaporating source material and the second evaporating source material onto a portion of an object to be processed, and moving the first evaporating source and the second evaporating source from a first end of the object to a second end of the object to form a multilayer film comprising a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.
Abstract:
A device including an attachable multi-functional peripheral device and a method of managing functions according to a connection between the device and the multi-functional peripheral device includes the steps of: checking a connected/disconnected state of the multi-functional peripheral device and an open/closed state of the folding device when a preset interrupt is generated; and controlling a functional operation related the preset interrupt according to the connected or disconnected state of the multi-functional peripheral device and the open or closed state of the folding device.
Abstract:
A method of forming a film on a substrate includes depositing first and second evaporating source materials respective from first and second evaporating sources onto the substrate while moving the evaporating sources together with respect to the substrate, the first and second evaporating source materials being different from each other and positioned to provide a non-overlapping deposition region of the first evaporating source material, an overlapping deposition region of the first and second evaporating source materials and a non-overlapping deposition region of the second source material such that when the evaporating sources are moved, a film is formed to include a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.
Abstract:
Disclosed are a transistor including a gate insulation layer and an organic passivation layer of a polymer thin film, and a fabrication method thereof. The transistor comprises a substrate, a gate electrode formed on the substrate, a gate insulation layer including a polymethacrylic acid thin film, formed on the gate electrode and the substrate, a channel layer formed on the gate insulation layer, source electrode and drain electrode formed on the channel layer so as to expose at least a part of the channel layer, and an organic passivation layer including a polymethacrylic acid thin film, formed on the source electrode, drain electrode and the partially exposed channel layer. The method for fabricating a transistor comprises steps of forming a gate electrode on a substrate, forming a gate insulation layer of a polymethacrylic acid thin film on the gate electrode and the substrate, forming a channel layer on the gate insulation layer, forming source electrode and drain electrode on the channel layer so as to expose at least a part of the channel layer, and forming an organic passivation layer of a polymethacrylic acid thin film on the source electrode, drain electrode and the partially exposed channel layer.
Abstract:
A sub-channel assignment apparatus and method of minimizing interference caused by sub-channel frequency overlaps when assigning sub-channels for sectors of a base station in an OFDMA system of a FDMA type. The apparatus includes: a plurality of sector channel management parts that assign at least one channel having assignable channel indexes in response to requests from users in a sector managed by the sector channel management part, and report sector load information regarding the total number of the requests from the users in the sector; and a channel assignment scheduler for using the sector load information reported from each channel management part to calculate the number of assignable channels per class for each of the sectors, and determines the assignable channel indexes per class for each of the sectors according to the number of assignable channels, and forwards the assignable channel indexes to each of the sector channel management parts.
Abstract:
A method of forming a plurality of multi-layer organic films in a single process includes preparing a first evaporating source that evaporates a first evaporating source material onto a first deposition region and a second evaporating source that evaporates a second evaporating source material onto a second deposition region, wherein the first evaporating source material and the second evaporating source material are different from each other, adjusting the first evaporating source and the second evaporating source in order to obtain a first overlapping region in which the first deposition region and the second deposition region overlap each other, driving the first evaporating source and the second evaporating source to deposit the first evaporating source material and the second evaporating source material onto a portion of an object to be processed, and moving the first evaporating source and the second evaporating source from a first end of the object to a second end of the object to form a multilayer film comprising a first layer that is a deposition of only the first evaporating source material, a second layer that is a deposition of a mixture of the first evaporating source material and the second evaporating source material and a third layer that is a deposition of only the second source material.