Abstract:
The present invention relates generally to an environmental control unit for use in air handling systems that provides highly effective filtration of noxious gases (such as ammonia). Such a filtration system utilizes novel undoped precipitated silica or silicon-based gels to temporarily trap and remove such undesirable gases from an enclosed environment and permit recycling of such gases subsequently thereto. Such precipitated silicas need to exhibit specific pore sizes, pore volumes, pore diameters, and particles sizes to be effective for such a purpose. The combination of these particular properties permits highly effective noxious gas filtration such that excellent uptake and breakthrough results are attained, particularly in comparison with prior media filtration products. Methods of using and specific filter apparatuses are also encompassed within this invention.
Abstract:
The present invention relates generally to an environmental control unit for use in air handling systems that provides highly effective filtration of noxious gases (such as ammonia). Such a filtration system utilizes novel metal-doped silica-based gels to trap and remove such undesirable gases from an enclosed environment. Such gels exhibit specific porosity requirements and density measurements. Furthermore, in order for proper metal doping to take effect, such gels must be treated while in a wet state. The combination of these particular properties and metal dopant permits highly effective noxious gas filtration such that uptake and breakthrough results are attained, particularly in comparison with prior silica gel filtration products. Methods of using and specific filter apparatuses are also encompassed within this invention.
Abstract:
The present invention relates generally to an environmental control unit for use in air handling systems that provides highly effective filtration of noxious gases (such as ammonia). Such a filtration system utilizes novel metal-doped silica-based gels to trap and remove such undesirable gases from an enclosed environment. Such gels exhibit specific porosity requirements and density measurements. Furthermore, in order for proper metal doping to take effect, such gels must be treated while in a wet state. The combination of these particular properties and metal dopant permits highly effective noxious gas filtration such that uptake and breakthrough results are attained, particularly in comparison with prior silica gel filtration products. Also included is the presence of an oxidizing agent to aid in capturing nitrous oxide and preventing conversion of such a product to NO. Methods of using and specific filter apparatuses are also encompassed within this invention.
Abstract:
Precipitated silica product having low surface area and enhanced flavor compatibility. The precipitated silica product is especially well-adapted for use in dentifrices containing cetylpyridinium chloride, which do not attach to the low surface area silica product in a meaningful level and thus remain available for antimicrobial action. Processes for making the low surface area silica product are also provided.
Abstract:
An environmental control for use in air handling systems that are required to provide highly effective filtration of noxious gases is provided. In one embodiment, a filtration system utilizes a novel combination of at least one metal-doped silica-based gel and zeolite materials to trap and/or modify, and remove such undesirable gases (such as ammonia, ethylene oxide, formaldehyde, and nitrous oxide, as examples) from an enclosed environment. The gel component exhibits specific porosity requirements and density measurements; the zeolite component is generally acidic and is preferably not reacted with any salts or like substances. The novel combination of such gels and zeolites permits highly effective noxious gas filtration over a wide range of known toxic industrial chemicals such that excellent breakthrough results are attained, particularly in comparison with prior media filtration products. Also included is the presence of an oxidizing agent on the gel materials to aid in capturing nitrogen dioxide and preventing conversion of such a product to NO. Methods of using and the application within specific filter apparatuses are also encompassed within this invention.
Abstract:
New silica gel materials and novel methods of producing such are provided. The method itself entails a manner of mixing the reactants together in a one-pot process such that the time required for aging is reduced without compromising the ability to target pore size production. In such a way, the pH of the reaction drives pore size development, thereby permitting a more efficient process to be followed in terms of expensive drying/heating steps being reduced timewise, if not altogether. Furthermore, in one embodiment, the resultant gel materials exhibit a certain pore size minimum while simultaneously exhibiting a degree of softness heretofore unavailable. As such, not only is this novel method more efficient in silica gel manufacture, but the resultant materials are completely novel as well. The gel materials made therefrom may be utilized in a variety of different end uses, such as cooking oil filtration, soft skin cleansers, dental abrasives, and the like. Methods of production and use, as well as the novel gel materials themselves, particularly caustic and composite gels, are thus encompassed within this invention.
Abstract:
The treatment of cooking oils and fats with specific types of precipitated silica materials to prolong the useful life of such oils and fats within restaurant settings. More particularly, such an invention encompasses the utilization of specific types of precipitated silica materials to filter such oils and/or fats. Such precipitated silica materials and treatments therewith aid to remove large amounts of free fatty acids after such oils and/or fats have been utilized to fry foodstuffs, as well as reduce the amount of additional oil and/or fat potentially necessary to bring the used oils and/or fats up to a level of permitted further utilization within a restaurant environment.
Abstract:
An environmental control for use in air handling systems that are required to provide highly effective filtration of noxious gases is provided. In one embodiment, a filtration system utilizes a novel combination of at least one metal-doped silica-based gel and zeolite materials to trap and/or modify, and remove such undesirable gases (such as ammonia, ethylene oxide, formaldehyde, and nitrous oxide, as examples) from an enclosed environment. The gel component exhibits specific porosity requirements and density measurements; the zeolite component is generally acidic and is preferably not reacted with any salts or like substances. The novel combination of such gels and zeolites permits highly effective noxious gas filtration over a wide range of known toxic industrial chemicals such that excellent breakthrough results are attained, particularly in comparison with prior media filtration products. Also included is the presence of an oxidizing agent on the gel materials to aid in capturing nitrogen dioxide and preventing conversion of such a product to NO. Methods of using and the application within specific filter apparatuses are also encompassed within this invention.