Abstract:
The invention relates to thin film transistors comprising novel dielectric layers and novel electrodes comprising metal compositions that can be provided by a dry thermal transfer process.
Abstract:
A thick film pastes comprising at least one particulate platinum (alloy)/metal oxide composite, an organic vehicle and, as an optional component, at least one particulate platinum (alloy), wherein the total proportion of particulate platinum (alloy)/metal oxide composite plus the optionally present particulate platinum (alloy) in the thick film paste is 84 to 95 wt. %, based on total thick film paste composition.
Abstract:
Dispersed, crystalline, stable to oxidation copper particles are prepared in the absence of polymeric dispersants by rapidly reducing a Cu(I) salt with an Fe(II) carboxylic acid complex in water. The resulting microns sized copper powders contain only organics which decompose at temperatures low enough not to interfere with sintering processes and the formation of conductive copper structures.
Abstract:
The invention relates to thin film transistors comprising novel dielectric layers and novel electrodes comprising metal compositions that can be provided by a dry thermal transfer process.
Abstract:
Disclosed are methods of making multi-element, finely divided, alloy powders containing silver and at least two non-silver containing elements and the uses of these powders in ceramic piezoelectric devices.
Abstract:
A photoimageable composition comprising finely divided particles of inorganic material comprising coated silver particles that are at least partially coated with at least one surfactant and inorganic binder dispersed in organic medium comprising an aqueous developable polymer, photo-initiation system and organic solvent.
Abstract:
A photoimageable composition comprising finely divided particles of inorganic materials comprising functional phase particles selective from electrically conductive, resistive and dielectric particles; and inorganic binder dispersed in organic medium comprising an aqueous developable polymer; photoinitiation system; and a photospeed enhancer wherein the enhancer comprises a ratio of 30/70 to 70/30 mixture selected from stearic acid and palmitic acid; salt of stearate and salt of palmitate; stearic acid and salt of palmitate; salt of stearate and palmitic acid; and organic solvent.
Abstract:
Disclosed are methods of making multi-element, finely divided, metal powders containing one or more reactive metals and one or more non-reactive metals. Reactive metals include metals or mixtures thereof from titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), vanadium (V), nickel (Ni), cobalt (Co), molybdenum (Mo), manganese (Mn), and iron (Fe). Non-reactive metals include metals or mixtures such as silver (Ag), tin (Sn), bismuth (Bi), lead (Pb), antimony (Sb), zinc (Zn), germanium (Ge), phosphorus (P), gold (Au), cadmium (Cd), berrylium (Be), tellurium (Te).
Abstract:
Photovoltaic cells, including silicon solar cells, and methods and compositions for making such photovoltaic cells are provided. A silicon substrate having p-type silicon base and an n-type silicon layer is provided with a silicon nitride layer, an exchange metal in contact with the silicon nitride layer, and a non-exchange metal in contact with the exchange metal. This assembly is fired to form a metal silicide contact on the silicon substrate, and a conductive metal electrode in contact with the metal silicide contact. The exchange metal is from nickel, cobalt, iron, manganese, molybdenum, and combinations thereof, and the non-exchange metal is from silver, copper, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, gold, cadmium, beryllium, and combinations thereof.
Abstract:
Disclosed is a process for the manufacture of glass-crystalline particles comprising a glass component and a crystalline component comprising the steps of: a) providing a precursor solution comprising a solvent, a glass component composition, and a crystalline component composition; b) forming an aerosol comprising finely divided droplets of the precursor solution, wherein the droplet concentration which is below the concentration where collisions and subsequent coalescence of the droplets results in a 10% reduction in droplet concentration; c) heating the aerosol wherein, upon heating, glass-crystalline particles are formed, wherein the glass-crystalline particles comprise a glass component and a crystalline component, and wherein the crystalline component comprises one or more metal oxides; and d) isolating the glass-crystalline particles.