Abstract:
A display panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a plurality of pixel electrodes in a plurality of lower pixel portions, respectively, and each of the pixel electrodes includes a plurality of lower openings spaced apart from each other. The second substrate includes a common electrode including a plurality of upper openings spaced apart from each other in a plurality of upper pixel portions corresponding to the lower pixel portions, respectively. The upper openings are connected to each other between adjacent upper pixel portions in a first direction. The liquid crystal layer is interposed between the first and second substrates.
Abstract:
A display substrate includes a base substrate, a gate line, a first insulation layer, a semiconductor layer, a data line, a switching element, a light-blocking member, a reflective electrode, a second insulation layer and a transmissive electrode. The switching element is defined by a gate electrode, a source electrode and a drain electrode spaced apart from a source electrode. The light-blocking member includes a first light-blocking part disposed in correspondence with an area where the gate line and the data line are disposed, and a second light-blocking part is disposed in a reflective area to include an embossing pattern. The reflective electrode is disposed on the second light-blocking part. The second insulation layer is disposed in a pixel area of the reflective electrode. The transmissive electrode is disposed on the second insulation layer in correspondence with a transmissive area of the pixel area.
Abstract:
A liquid crystal display includes a substrate, a pixel electrode disposed on the substrate and including a first subpixel electrode and a second subpixel electrode, and a common electrode facing the pixel electrode. The first subpixel electrode comprises a first edge, a second edge disposed opposite the first edge, and two first oblique edges substantially parallel to each other, the first oblique edges making an oblique angle with the first edge and the second edge and meeting the first edge. The second subpixel electrode comprises a first edge, a second edge disposed opposite the first edge, and two first oblique edges substantially parallel to or substantially perpendicular to the first oblique edges of the first subpixel electrode, the first oblique edges of the second subpixel electrode meeting the first edge of the second subpixel electrode. The first edge of the first subpixel electrode is adjacent to the first edge of the second subpixel electrode, and a length of the first edge of the first subpixel electrode is different from a length of the first edge of the second subpixel electrode. The first oblique edges of the first subpixel electrode are offset from the first oblique edges of the second subpixel electrode.
Abstract:
A substrate for an LCD panel includes an insulation substrate, a light-blocking layer, a color filter layer, a common electrode layer and a static electricity discharging layer. The light-blocking layer is formed on the insulation substrate to define a pixel region. The color filter layer is formed in the pixel region. The common electrode layer is formed on the color filter layer to provide the liquid crystal layer with a common voltage. The static electricity discharging layer discharges static electricity that is induced by an external stimulus to be captured within the substrate. Thus, when the static electricity induced by the external stimulus flows into the LCD panel, the static electricity may be discharged through the static electricity discharging layer, thereby preventing a spot due to the static electricity.
Abstract:
A display device includes a display panel, a first optical unit, and a second optical unit. The display panel includes a first substrate, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The liquid crystal layer is operated in a vertical alignment mode. The first optical unit includes a C-plate and a first polarization plate having a first absorption axis. The second optical unit includes a positive A-plate, a negative A-plate, and a second polarization plate having a second absorption axis substantially perpendicular to the first absorption axis. The positive A-plate and the negative A-plate may gather dispersed polarization states of a colored light.
Abstract:
A liquid crystal display includes: a substrate; a pixel electrode disposed on the substrate and having a first subpixel electrode and a second subpixel electrode; and a common electrode facing the pixel electrode, wherein the first subpixel electrode has a pair of bent edges substantially parallel to each other, the second subpixel electrode has a pair of bent edges substantially parallel to each other, and the second subpixel electrode has a height greater than a height of the first subpixel electrode.
Abstract:
A polarizer includes a first, second and third support layers, a first polarizing element disposed between the first support layer and the second support layer and the second polarizing element disposed between the second support layer and the third support layer. During the process of manufacturing the polarizer, the polarizer is stretched in the direction of length until the width of the polarizer after stretching is not less than half of the width of the polarizer before stretching.
Abstract:
A liquid crystal display includes: a first insulation substrate; a plurality of gate lines formed on the first insulation substrate; a data line crossing with the plurality of gate lines to form a pixel region; a pixel electrode that is divided into a main pixel electrode and a sub-pixel electrode by a pixel electrode cutting pattern and that is provided in the pixel region; a first thin film transistor that includes a drain electrode connected to the main pixel electrode and overlapped with the sub-pixel electrode with a protective film interposed therebetween; and a second thin film transistor that includes a control end connected to a previous gate line, an input end connected to the sub-pixel electrode, and an output end connected to the main pixel electrode.
Abstract:
An additional capacitor (“sharing capacitor”) is provided for each pixel of a liquid crystal display to store the previous voltage on the pixel electrode (i.e. the voltage obtained in the previous frame). At an opportune time after the pixel electrode has begun to charge for the current frame, the sharing capacitor's electrode is coupled to the pixel electrode to combine the pixel electrode's voltage with the sharing capacitor's voltage. As a result, the pixel electrode's voltage is changed to take into account the previous voltage so as to increase the liquid crystal's response speed. More particularly, the sharing capacitor's voltage changes the pixel voltage to provide a greater voltage overshoot or undershoot when the pixel color is changed a lot, so as to increase the liquid crystal response time. Therefore, greater response speed is provided at low power.
Abstract:
A liquid crystal display according to the present invention includes: a plurality of pixels arranged in a matrix, each of the pixels comprising a first subpixel and a second subpixel; a plurality of first gate lines connected to the first subpixels; a plurality of second gate lines connected to the second subpixels; and a plurality of data lines intersecting the first and the second gate lines, connected to the first and the second subpixels, and transmitting data voltages, wherein voltages of the first and the second subpixels of each of the pixels have opposite polarities and are obtained from a single image information, and the data voltages carried by the data lines are subjected to N×1 (N=1, 2, . . . ) dot inversion, N:M×1 (M=1, 2, . . . ) dot inversion, or N row inversion.