Abstract:
A light-emitting unit array includes a plurality of light-emitting units arranged and integrated monolithically in an array, and each of the light-emitting units includes a first doped type layer, a second doped type layer, a light-emission layer, and a photonic crystal structure. The light emission layer is disposed between the first doped type layer and the second doped type layer, wherein the second doped type layer has a surface facing away from the light emission layer. The photonic crystal structure is disposed on the surface of the second doped type layer.
Abstract:
A method for forming a pixel of an LED light source is provided. The method includes following steps: forming a first layer on a substrate; forming a second layer and a first light-emitting active layer on the first layer; exposing a portion of an upper surface of the first layer; forming a third layer on the substrate; forming a fourth layer and a second light-emitting active layer on the third layer; exposing a portion of an upper surface of the third layer; and forming a first electrode on the exposed upper surface of the first layer, a second electrode on a portion of an upper surface of the second layer, a third electrode on the exposed upper surface of the third layer, and a fourth electrode a portion of an upper surface of the fourth layer. The first light-emitting active layer and the second light-emitting active layer emit different colors of light.
Abstract:
A light-emitting system includes a first and second power input terminals for receiving an external power input to the light-emitting system; a first light-emitting-diode string comprising at least three light-emitting diodes placed sequentially in a first direction to allow a current flow through the at least three light-emitting diodes of the first light-emitting-diode string generally in the first direction; and a second light-emitting-diode string comprising at least three light-emitting diodes placed sequentially in a second direction to allow a current flow through the at least three light-emitting diodes of the second light-emitting-diode string generally in the second direction, The first and second light-emitting-diode strings may be serially coupled, and the first direction may be substantially vertical to the second direction.
Abstract:
A light emitting diode (LED), a fabricating method thereof, and a package structure thereof are provided. The LED includes a substrate, a first semiconductor layer disposed on the substrate, an active layer disposed on the first semiconductor layer, a second semiconductor layer disposed on the active layer, a current distribution modifying pattern, a first electrode and a second electrode. The active layer and the second semiconductor layer form a mesa structure and expose a part of the first semiconductor layer. The current distribution modifying pattern is disposed on the second semiconductor layer. The first electrode is disposed on and electrically connected to the first semiconductor layer exposed by the mesa structure. The second electrode is disposed on the current distribution modifying pattern and is electrically connected to the second semiconductor layer. The LED has superior light emitting efficiency.
Abstract:
A method for forming a pixel of an LED light source is provided. The method includes following steps: forming a first layer on a substrate; forming a second layer and a first light-emitting active layer on the first layer; exposing a portion of an upper surface of the first layer; forming a third layer on the substrate; forming a fourth layer and a second light-emitting active layer on the third layer; exposing a portion of an upper surface of the third layer; and forming a first electrode on the exposed upper surface of the first layer, a second electrode on a portion of an upper surface of the second layer, a third electrode on the exposed upper surface of the third layer, and a fourth electrode a portion of an upper surface of the fourth layer. The first light-emitting active layer and the second light-emitting active layer emit different colors of light.
Abstract:
An alternating current light-emitting device includes a substrate, an alternating current microdie light-emitting module, and a conductive structure. The alternating current microdie light-emitting module is formed on the substrate and has at least two microdies and a concave portion disposed between the two microdies. Each of the microdies has at least one active layer. The conductive structure electrically connects the microdies and thereby enables the active layers of the microdies to take turns to emit light during positive and negative half cycles of alternating current. The conductive structure is formed in the concave portion and covers an insulator. The present invention prevents undue open circuits but enhances yield.
Abstract:
A light-emitting system comprises: a first power input terminal and a second power input terminal; an insulating substrate; a first light-emitting-diode string formed on the insulating substrate comprising at least three light-emitting diodes placed sequentially in a first direction to allow a current flow through the at least three light-emitting diodes of the first light-emitting-diode string generally in the first direction; a second light-emitting-diode string formed on the insulating substrate comprising at least three light-emitting diodes placed sequentially in a second direction to allow a current flow through the at least three light-emitting diodes of the second light-emitting-diode string generally in the second direction; a third light-emitting-diode string comprising at least three light-emitting diodes placed sequentially in a third direction to allow a current flow through the at least three light-emitting diodes of the third light-emitting-diode string generally in the third direction.
Abstract:
A light emitting device and the fabrication method includes forming one or more light emitting modules on a substrate. The light emitting module receives an alternating current input and has at least two micro diodes. Each micro diode has at least two active layers and is electrically connected by a conductive structure so as to allow the active layers of the micro diodes to alternately emit light during positive and negative cycles of the alternating-current input.
Abstract:
A light emitting device includes a plurality of micro diodes, which are electrically connected to constitute a bridge rectifier circuit. Each branch of the bridge rectifier circuit includes a single micro diode or a plurality of micro diodes. The light emitting device is electrically connected to an AC power source, which alternately drives the light emitting device in two current loops. Therefore, the micro diodes in two current loops of the bridge rectifier circuit emit light by turns.
Abstract:
A method for forming a pixel of an LED light source is provided. The method includes: forming a first layer on a first substrate; forming a second layer and a first light-emitting active layer on the first layer; forming a first intermediate layer on the second layer; forming a third layer on a second substrate; forming a fourth layer and a second light-emitting active layer on the third layer; placing the third layer, the fourth layer, and the second light-emitting active layer on the first intermediate layer, wherein the first light-emitting active layer and the second light-emitting active layer emit different colors of light. A method for forming a plurality of light-emitting diode pixels arranged in a two-dimensional array is also provided.