摘要:
A method for 3D imaging of a biologic object (1) in an optical tomography system where a subcellular structure of a biological object (1) is labeled by introducing at least one nanoparticle-biomarker. The labeled biological object (1) is moved relatively to a microscope objective (62) to present varying angles of view and the labeled biological object (1) is illuminated with radiation having wavelengths between 150 nm and 900 nm. Radiation transmitted through the labeled biological object (1) and the microscope objective (62) within at least one wavelength bands is sensed with a color camera, or with a set of at least four monochrome cameras. A plurality of cross-sectional images of the biological object (1) from the sensed radiation is formed and reconstructed to make a 3D image of the labeled biological object (1).
摘要:
A system and method for detecting poor quality images in an optical tomography system includes an acquisition apparatus for acquiring a set of pseudo-projection images of an object having a center of mass, where each of the set of pseudo-projection images is acquired at a different angle of view. A reconstruction apparatus is coupled to receive the pseudo-projection images, for reconstruction of the pseudo-projection images into 3D reconstruction images. A quality apparatus is coupled to receive the 3D reconstruction images and operates to detect of selected features that characterize poor quality reconstructions.
摘要:
Two or more two-dimensional Fourier transforms are acquired from different perspectives of a three-dimensional object region. A three-dimensional Fourier transform is then constructed using tomographic methods, permitting the application of image analysis algorithms analogous to those used for two-dimensional images.
摘要:
A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
摘要:
A scanning method for scanning samples of biological cells using optical tomography includes preparing, acquiring, reconstructing and viewing three-dimensional images of cell samples. Concentration and enrichment of the cell sample follows. The cell sample is stained. Cells are isolated from the cell sample and purified. A cell/solvent mixture is injected into a gel by centrifugation. A cell/gel mixture is injected into a capillary tube until a cell appears centered in a field of view using a stopped-flow method. An optical imaging system, such as a fixed or variable motion optical tomography system acquires a projection image. The sample is rotated about a tube axis to generate additional projections. Once image acquisition is completed, the acquired image projections are corrected for errors. A computer or other equivalent processor is used to compute filtered backprojection information for 3D reconstruction.
摘要:
A system for optical imaging of a thick specimen that permits rapid acquisition of data necessary for tomographic reconstruction of the three-dimensional (3D) image. One method involves the scanning of the focal plane of an imaging system and integrating the range of focal planes onto a detector. The focal plane of an optical imaging system is scanned along the axis perpendicular to said plane through the thickness of a specimen during a single detector exposure. Secondly, methods for reducing light scatter when using illumination point sources are presented. Both approaches yield shadowgrams. This process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. A set of pseudo-projections is generated, which are input to a three dimensional tomographic image reconstruction algorithm.
摘要:
A system and method for detecting poor quality images in an optical tomography system includes an acquisition apparatus for acquiring a set of pseudo-projection images of an object having a center of mass, where each of the set of pseudo-projection images is acquired at a different angle of view. A reconstruction apparatus is coupled to receive the pseudo-projection images, for reconstruction of the pseudo-projection images into 3D reconstruction images. A quality apparatus is coupled to receive the 3D reconstruction images and operates to detect of selected features that characterize poor quality reconstructions.
摘要:
An optical projection tomography system is illuminated with a light source. An object-containing tube, a portion of which is located within the region illuminated by the light source, contains an object of interest that has a feature of interest. A detector is located to receive emerging radiation from the object of interest. A lens, including optical field extension elements, is located in the optical path between the object region and the detector, such that light rays from multiple object planes in the object-containing tube simultaneously focus on the detector. The object-containing tube moves relatively to the detector and the lens operate to provide multiple views of the object region for producing an image of the feature of interest at each view.
摘要:
A method for reconstructing three-dimensional (3D) tomographic images. A set of pseudo-projection images of an object is acquired. Error corrections are applied to the set of pseudo-projection images to produce a set of corrected pseudo-projection images. The set of corrected pseudo-projection images are processed to produce (3D) tomographic images.