摘要:
A method for reconstructing three-dimensional (3D) tomographic images. A set of pseudo-projection images of an object is acquired. Error corrections are applied to the set of pseudo-projection images to produce a set of corrected pseudo-projection images. The set of corrected pseudo-projection images are processed to produce (3D) tomographic images.
摘要:
A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
摘要:
A scanning method for scanning samples of biological cells using optical tomography includes preparing, acquiring, reconstructing and viewing three-dimensional images of cell samples. Concentration and enrichment of the cell sample follows. The cell sample is stained. Cells are isolated from the cell sample and purified. A cell/solvent mixture is injected into a gel by centrifugation. A cell/gel mixture is injected into a capillary tube until a cell appears centered in a field of view using a stopped-flow method. An optical imaging system, such as a fixed or variable motion optical tomography system acquires a projection image. The sample is rotated about a tube axis to generate additional projections. Once image acquisition is completed, the acquired image projections are corrected for errors. A computer or other equivalent processor is used to compute filtered backprojection information for 3D reconstruction.
摘要:
A system for optical imaging of a thick specimen that permits rapid acquisition of data necessary for tomographic reconstruction of the three-dimensional (3D) image. One method involves the scanning of the focal plane of an imaging system and integrating the range of focal planes onto a detector. The focal plane of an optical imaging system is scanned along the axis perpendicular to said plane through the thickness of a specimen during a single detector exposure. Secondly, methods for reducing light scatter when using illumination point sources are presented. Both approaches yield shadowgrams. This process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. A set of pseudo-projections is generated, which are input to a three dimensional tomographic image reconstruction algorithm.
摘要:
A method for 3D imaging of a biologic object (1) in an optical tomography system where a subcellular structure of a biological object (1) is labeled by introducing at least one nanoparticle-biomarker. The labeled biological object (1) is moved relatively to a microscope objective (62) to present varying angles of view and the labeled biological object (1) is illuminated with radiation having wavelengths between 150 nm and 900 nm. Radiation transmitted through the labeled biological object (1) and the microscope objective (62) within at least one wavelength bands is sensed with a color camera, or with a set of at least four monochrome cameras. A plurality of cross-sectional images of the biological object (1) from the sensed radiation is formed and reconstructed to make a 3D image of the labeled biological object (1).
摘要:
An optical tomography system for imaging an object of interest including a light source for illuminating the object of interest with a plurality of radiation beams. The object of interest is held within an object containing tube such that it is illuminated by the plurality of radiation beams to produce emerging radiation from the object containing tube, a detector array is located to receive the emerging radiation and produce imaging data used by a mechanism for tracking the object of interest.
摘要:
An optical tomography system for imaging an object of interest including a light source for illuminating the object of interest with a plurality of radiation beams. The object of interest is held within an object containing tube such that it is illuminated by the plurality of radiation beams to produce emerging radiation from the object containing tube, a detector array is located to receive the emerging radiation and produce imaging data used by a mechanism for tracking the object of interest.
摘要:
A method for reconstructing three-dimensional (3D) tomographic images. A set of pseudo-projection images of an object is acquired. Error corrections are applied to the set of pseudo-projection images to produce a set of corrected pseudo-projection images. The set of corrected pseudo-projection images are processed to produce (3D) tomographic images.
摘要:
An optical fiber having a reduced cross-sectional region adjacent to its distal end, which is fused to an optical component, is vibrated, rotating the optical component to scan a region. The optical component has a back focal point that is substantially coincident with an effective light source of the optical fiber, so that the light emanating from the optical component is either substantially collimated or convergent. The optical component is either a ball lens, a drum lens, a graded index lens, or a diffractive optical element. A vibratory node is also made substantially coincident with the back focal point of the optical component, producing a compact scanner with extensive field of view. The optical fiber is preferably reduced in cross-sectional area after the optical component is fused to the optical fiber, by immersion in a three-layer etch apparatus having an etch-stop layer, an etch layer, and a solvent layer.
摘要:
A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.