Abstract:
Disclosed herein are methods, systems, and devices for providing shared mixed reality experiences via a service-oriented architecture (SOA). According to one embodiment, a method is implemented on at least one server and includes identifying interface requirements for a set of services to be implemented between SOA front-end components and SOA back-end components. At least one of the SOA front-end components is configured for communicating with at least one augmented reality (AR) user interface and at least one of the SOA back-end components is configured for communicating with at least one virtual object library. The SOA front-end components are operable to be combined with the SOA back-end components to form an operable SOA solution.
Abstract:
The present invention relates to a method for preparing a polymer based on N-vinyl lactam monomer units, which comprises a step (E) for controlled radical polymerization of a composition comprising: monomers containing (and most often consisting of) N-vinyl lactam monomers, either identical or different (and generally identical); an agent for controlling the radical polymerization, for example comprising a thiocarbonylthio group —S(C═S)—; and a radical polymerization initiator which is a redox system comprising a reducing agent (Red) and an oxidizing agent (Ox).
Abstract:
A channel scan architecture for detecting touch events on a touch sensor panel is disclosed. The channel scan architecture can combine drive logic, sense channels and channel scan logic on a single monolithic chip. The channel scan logic can be configured to implement a sequence of scanning processes in a panel subsystem without intervention from a panel processor. The channel scan architecture can provide scan sequence control to enable the panel processor to control the sequence in which individual scans are implemented in the panel subsystem. Type of scans that can be implemented in the panel subsystem can include a spectral analysis scan, touch scan, phantom touch scan, ambient light level scan, proximity scan and temperature scan.
Abstract:
A seal assembly for closing an aperture in an aerodynamic surface of a structure, the seal assembly comprising: a track for attachment to the structure; and a retractable seal including a flexible substrate and a plurality of rods connected to the substrate, wherein at least one of the rods is mounted for running movement along the track, and the seal is moveable between an extended position and a retracted position by moving the at least one rod along the track accompanied by folding/unfolding of the seal substrate, and wherein the seal is biased to its extended position.
Abstract:
There is provided a method for installing a liner plate mounted on an interface surface of a load-bearing portion of mobile earth-moving machinery. There is also provided a liner plate which includes at least two openings and at least one grout strip, with the at least one grout strip being along a perimeter of the liner plate.
Abstract:
Automatic low noise frequency selection for a touch sensitive device is disclosed. A low noise stimulation frequency can be automatically selected by device logic without intervention of the device processor to stimulate the device to sense a touch event at the device. The device logic can automatically select a set of low noise frequencies from among various frequencies based on the amount of noise introduced by the device at the various frequencies, where the frequencies with the lower noise amounts can be selected. The device logic can also automatically select a low noise frequency from among the selected set as the low noise stimulation frequency. The device logic can be implemented partially or entirely in hardware.
Abstract:
A method and apparatus for a wellbore assembly. The wellbore assembly may comprise a conveyance member including at least one of a continuous spooled rod, a wireline, and a slickline; an accumulator system connected to the conveyance member; and a setting tool connected to the accumulator system. The accumulator system may be configured to supply a fluid pressure to actuate the setting tool. A method of operating a wellbore tool may comprise lowering a wellbore assembly into a wellbore using a conveyance member including at least one of a continuous spooled rod, a wireline, and a slickline, wherein the wellbore assembly includes an accumulator system and a setting tool. The method may comprise actuating the accumulator system to provide a fluid pressure to the setting tool. The method may comprise actuating the setting tool using the fluid pressure.
Abstract:
A circuit board includes a solder wettable surface and a metal mask configured to restrict solder from flowing outside the solder wettable surface of the circuit board.
Abstract:
An orthotic device is disclosed having a frame system, a first actuator, and a second actuator. The frame system may include a lightweight supportive material, and may be configured to receive a user's foot. The first actuator may be coupled to the frame system, and may be configured to activate and develop push of the forefoot of the user's foot during a walking step. The second actuator may be coupled to the frame system, and may be configured to activate and raise a user's toes.
Abstract:
A system and method for autonomously scanning a sensor panel device is disclosed. A sensor panel processor can be disabled after a first predetermined amount of time has elapsed without the sensor panel device sensing any events. One or more system clocks can also be disabled to conserve power. While the processor and one or more system clocks are disabled, the sensor panel device can periodically autonomously scan the sensor panel for touch activity. If one or more results from the autonomous scans exceed a threshold, the sensor panel device re-enables the processor and one or more clocks to actively scan the sensor panel. If the threshold is not exceeded, the sensor panel device continues to periodically autonomously scan the sensor panel without intervention from the processor. The sensor panel device can periodically perform calibration functions to account for any drift that may be present in the system.