Abstract:
This invention provides for compositions for use in real time nucleic acid detection processes. Such real time nucleic acid detection processes are carried out with energy transfer elements attached to nucleic acid primers, nucleotides, nucleic acid probes or nucleic acid binding agents. Real time nucleic acid detection allows for the qualitative or quantitative detection or determination of single-stranded or double-stranded nucleic acids of interest in a sample. Other processes are provided by this invention including processes for removing a portion of a homopolymeric sequence, e.g., poly A sequence or tail, from an analyte or library of analytes. Compositions useful in carrying out such removal processes are also described and provided.
Abstract:
This invention provides for labeling reagents, labeled targets and processes for preparing labeling reagents. The labeling reagents can take the form of cyanine dyes, xanthene dyes, porphyrin dyes, coumarin dyes or composite dyes. These labeling reagents are useful for labeling probes or targets, including nucleic acids and proteins. These reagents can be usefully applied to protein and nucleic acid probe based assays. They are also applicable to real-time detection processes.
Abstract:
The present invention provides a method for detecting the presence of a target polynucleotide in a sample. The method comprises the steps of (a) contacting the sample under hybridizing conditions with (i) a single-stranded polynucleotide probe capable of hybridizing to the target polynucleotide and comprising a polynucleotide and at least one intercalating molecule attached to a nucleotide of the polynucleotide by means of a linker arm, and (ii) a background-reducing reagent which chemically modifies the intercalating molecule when the probe to which it is attached is single-stranded; and (b) detecting a property change resulting from the intercalation of the intercalating molecule into a target-probe hybrid, thereby detecting the target polynucleotide. The intercalating molecule which is part of the polynucleotide probe induces a change in a property, in either the probe, the target polynucleotide or a target-probe hybrid. The property change can be detected, for example, by means of a generated signal which can be identified or quantified. The present invention can be employed in a heterogeneous (two step or two phase) assay using a support to immobilize the target or probe, and a washing step, and in a homogeneous (one step or one phase) assay using a hybridization solution. Also provided are a composition and a nucleic acid hybridization kit useful for detecting the presence of a target polynucleotide in a sample.
Abstract:
A detectable molecule of the formulaA.sup.3 --(--X--R.sup.1 --E--Det.sup.b).sub.mwhere A.sup.3 is A.sup.2 or a polymer, where A.sup.3 has at least one modifiable reactive group selected from the group consisting of amino, hydroxy, cis OH, halides, aryl, imidazoyl, carbonyl, carboxy, thiol or a residue comprising an activated carbon; --X-- is selected from the group consisting of ##STR1## --R.sup.1 -- is ##STR2## or a C.sub.1 -C.sub.10 branched or unbranched alkyl or aralkyl, which may be substituted by --OH; --Y-- is a direct bond to --E--, or --Y-- is --E--R.sup.2 -- where R.sup.2 is a C.sub.1 -C.sub.10 branched or unbranched alkyl; Z.sub.a is chlorine, bromine or iodine; E is O, NH or an acyclic divalent sulfur atom; Det.sup.b is a chemical moiety capable of being detected, preferably comprising biotin or a metal chelator of the formula: ##STR3## or the 4-hydroxy or acyloxy derivatives thereof, where R.sup.3 is C.sub.1 -C.sub.4 alkyl or CH.sub.2 COOM, M is the same or different and selected from the group consisting of hydrogen, a metal or non-metal cation or is C.sub.1 -C.sub.10 alkyl, aryl or aralkyl; and m is an integer from 1 to the total number of modified reactive groups on A.sup.3. The detectable molecules are useful in in vitro or in vivo assays or therapy.
Abstract:
A detectable molecule of the formulaA.sup.3 --(--X--R.sup.1 --E--Det.sup.b).sub.mwherein A.sup.3 is A.sup.2 or a polymer, where A.sup.3 has at least one modifiable reactive group selected from the group consisting of amino, hydroxy, cis .OH, halides, aryl, imidazoly, carbonyl, carboxy, thiol or a residue comprising an activated carbon; --X-- is selected from the group consisting of ##STR1## a C.sub.1 -C.sub.10 branched or unbranched alkyl or aralkyl, which may be substituted by --OH; --Y-- is a direct bond to --E--, or --Y-- is --E--R.sup.2 -- where R.sup.2 is a C.sub.1 -C.sub.10 branched or unbranched alkyl; Z.sub.a is chlorine, bromine or iodine; E is O, NH or an acyclic divalent sulfur atom; Det.sup.b is a chemical moiety capable of being detected, preferably comprising biotin or a metal chelator of the formula: ##STR2## or the 4-hydroxy or acyloxy derivative thereof, where R.sup.3 is C.sub.1 -C.sub.4 alkyl or CH.sub.2 COOM, M is the same or different and selected from the group consisting of hydrogen, a metal or non-metal cation or is C.sub.1 -C.sub.10 alkyl, aryl or aralkyl; and mm is an integer from 1 to the total number of modified reactive groups on A.sup.3. The detectable molecules are useful in in vitro or in vivo assays or therapy.
Abstract:
The present invention provides multisignal labeling reagents and these are useful in a number of biochemical applications, including the manufacture of biomolecular probes and their use in detecting or amplifying analyte-specific moieties.
Abstract:
This invention provides novel processes for amplifying nucleic acid sequences of interest, including linear and non-linear amplification. In linear amplification, a single initial primer or nucleic acid construct is utilized to carry out the amplification process. In non-linear amplification, a first initial primer or nucleic acid construct is employed with a subsequent initial primer or nucleic acid construct. In other non-linear amplification processes provided by this invention, a first initial primer or nucleic acid construct is deployed with a second initial primer or nucleic acid construct to amplify the specific nucleic acid sequence of interest and its complement that are provided. A singular primer or a singular nucleic acid construct capable of non-linear amplification can also be used to carry out non-linear amplification in accordance with this invention. Post-termination labeling process for nucleic acid sequencing is also disclosed in this invention that is based upon the detection of tagged molecules that are covalently bound to chemically reactive groups provided for chain terminators. A process for producing nucleic acid sequences having decreased thermodynamic stability to complementary sequences is also provided and achieved by this invention. Unique nucleic acid polymers are also disclosed and provided in addition to other novel compositions, kits and the like.
Abstract:
This invention provides for labeling reagents, labeled targets and processes for preparing labeling reagents. The labeling reagents can take the form of cyanine dyes, xanthene dyes, porphyrin dyes, coumarin dyes or composite dyes. These labeling reagents are useful for labeling probes or targets, including nucleic acids and proteins. These reagents can be usefully applied to protein and nucleic acid probe based assays. They are also applicable to real-time detection processes.
Abstract:
This invention provides inter alia an in vitro process for producing multiple specific nucleic acid copies in which the copies are produced under isostatic conditions, e.g., temperature, buffer and ionic strength, and independently of any requirement for introducing an intermediate structure for producing the copies. In other aspects, the invention provides in vitro processes for producing multiple specific nucleic acid copies in which the products are substantially free of any primer-coded sequences, such sequences having been substantially or all removed from the product to regenerate a primer binding site, thereby allowing new priming events to occur and multiple nucleic acid copies to be produced. This invention further provides a promoter-independent non-naturally occurring nucleic acid construct that produces a nucleic acid copy or copies without using or relying on any gene product that may be coded by the nucleic acid construct. Another aspect of this invention concerns a protein-nucleic acid construct in the form of a conjugate linked variously, e.g., covalent linkage, complementary nucleic acid base-pairing, nucleic acid binding proteins, or ligand receptor binding. Further disclosed in this invention is an in vivo process for producing a specific nucleic acid in which such a protein-nucleic acid construct conjugate is introduced into a cell. A still further aspect of the invention relates to a construct comprising a host promoter, second promoter and DNA sequence uniquely located on the construct. The host transcribes a sequence in the construct coding for a different RNA polymerase which after translation is capable of recognizing its cognate promoter and transcribing from a DNA sequence of interest in the construct with the cognate promoter oriented such that it does not promote transcription from the construct of the different RNA polymerase.
Abstract:
The present invention provides multisignal labeling reagents and these are useful in a number of biochemical applications, including the manufacture of biomolecular probes and their use in detecting or amplifying analyte-specific moieties.