Abstract:
The present invention relates to a connection molding for automation of a three-phase motor winding, which specifically comprises: a fixed coil part fixed inside of a main body, a coil part installed within the fixed coil part, a central shaft fixed to the main body and passing through the coil part, and a connector part coupled to the top of the coil part so that the coil of the coil part is connected thereto and the central shaft passes and is coupled therethrough.
Abstract:
A method includes providing a silicon-containing die and providing a heat sink having a palladium layer over a first surface of the heat sink. A first gold layer is located over one of a first surface of the die or the palladium layer. The silicon-containing die is bonded to the heat sink, where bonding includes joining the silicon-containing die and the heat sink such that the first gold layer and the palladium layer are between the first surface of the silicon-containing die and the first surface of the heat sink, and heating the first gold layer and the palladium layer to form a die attach layer between the first surface of the silicon-containing die and the first surface of the heat sink, the die attach layer comprising a gold interface layer having a plurality of intermetallic precipitates, each of the plurality of intermetallic precipitates comprising palladium, gold, and silicon.
Abstract:
The present invention relates to a pharmaceutical vaccine composition for a human cervical cancer, comprising: (a) (i) a L1 virus-like particle (VLP) of human papillomavirus (HPV) type 16, a L1 VLP of HPV type 18, or a combination thereof; and (ii) a deacylated non-toxic lipooligosaccharide (LOS); and (b) a pharmaceutically acceptable carrier; and a method for preparing a human papillomavirus (HPV) L1 virus-like particle (VLP). The pharmaceutical vaccine composition of the present invention is in both Th1-type immune response (cellular immunity) and Th2-type immune response (humoral immunity) against HPV more excellent than Cervrix™ and Gardasil™, exhibiting a superior efficacy as a vaccine for a human cervical cancer.
Abstract:
Provided is a turbine type electric fuel pump for an automobile having a casing in which a pump portion and a motor portion are installed. The pump portion includes a fuel intake case having a fuel intake hole, a fuel discharge case having a fuel discharge hole, and an impeller installed on a pumping chamber. An inlet side ring type duct is connected to the fuel intake hole. An outlet side ring type duct is connected to the fuel discharge hole. The impeller includes a disc portion in which a shaft assembly portion is formed at the center thereof, a plurality of blades extending from an outer circumferential surface of the disc portion outwardly in a radial direction, and a ring portion connecting the blades along the outer circumferential surface of the disc portion. The outer circumferential surface of the disc portion gradually protrudes outwardly in a radial direction of the impeller from both upper and lower sides thereof to a center thereof. The inner circumferential surface of the ring portion gradually protrudes inwardly in a radial direction of the impeller from both upper and lower sides thereof to a center thereof.
Abstract:
The present invention relates to a pharmaceutical vaccine composition for a human cervical cancer, comprising: (a) (i) a L1 virus-like particle (VLP) of human papillomavirus (HPV) type 16, a L1 VLP of HPV type 18, or a combination thereof; and (ii) a deacylated non-toxic lipooligosaccharide (LOS); and (b) a pharmaceutically acceptable carrier; and a method for preparing a human papillomavirus (HPV) L1 virus-like particle (VLP). The pharmaceutical vaccine composition of the present invention is in both Th1-type immune response (cellular immunity) and Th2-type immune response (humoral immunity) against HPV more excellent than Cervrix™ and Gardasil™, exhibiting a superior efficacy as a vaccine for a human cervical cancer.
Abstract:
A random pitch impeller for a fuel pump has number of blades. An incremental angle of the blades is set by the expression: Δθ i = ( 360 N ) + ( - 1 ) i × Am × sin ( p 1 × 360 N × i ) × cos ( P 2 × 360 N × i ) , where ΔθI is the incremental angle between the blades, N is the total number of blades (N=2, 3, 5, 7, 11, 13, 17, . . . ), Am is the distribution magnitude of the inter-blade interval (equally divided angle) (0
Abstract:
The present invention relates to a pharmaceutical vaccine composition comprising: (a) a pathogen-derived antigen selected from the group consisting of Mycobacterium tuberculosis antigen, Bacillus anthracis antigen, HAV (hepatitis A virus) antigen, HBV (hepatitis B virus) antigen, HCV (hepatitis C virus) antigen, HIV (human immunodeficiency virus) antigen, influenza virus antigen, HSV (herpes simplex virus) antigen, Hib (Haemophilus influenzae type b) antigen, Neisseria meningitidis antigen, Corynebacterium diphtheriae antigen, Bordetella pertussis antigen, Clostridium tetani antigen and Varicella virus antigen; (b) a deacylated non-toxic LOS (lipooligosaccharide); and (c) a pharmaceutically acceptable carrier.
Abstract:
The present invention relates to a connection molding for automation of a three- phase motor winding, which specifically comprises: a fixed coil part fixed inside of a main body, a coil part installed within the fixed coil part, a central shaft fixed to the main body and passing through the coil part, and a connector part coupled to the top of the coil part so that the coil of the coil part is connected thereto and the central shaft passes and is coupled therethrough.