Abstract:
Ionomers and ionomer membranes, consisting of a non-fluorinated or partly fluorinated non-, partly or fully-aromatic main chain and a non- or partly-fluorinated side chain with ionic groups or their non-ionic precursors, have a positive impact on the proton conductivity of the ionomers. Various processes produce these polymeric proton conductors.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
The invention relates to novel polymers or oligomers containing at least sulfinate groups (P—(SO2)nX, X=1-(n=1), 2-(n=2) or 3-(n=3) valent metal cation or H+ or ammonium ion NR4+ where R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y═F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyl, N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution form.Polymer and polymer(blend)membranes which are obtained by further reacting the received sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.
Abstract:
The invention relates to novel organic/inorganic hybrid membranes which have the following composition: a polymer acid containing —SO3H, PO3H2, —COOH or B(OH)2 groups, a polymeric ease (optional), which contains primary, secondary or tertiary amino groups, pyridine groups, imidazole, benzimidazole, triazole, benzotriazole, pyrazole or benzopyrazole groups, either in the side chain or in the main chain; an additional polymeric base (optional) containing the aforementioned basic groups; an element or metal oxide or hydroxide, which has been obtained by hydrolysis and/or sol-gel reaction of an elementalorganic and/or metalorganic compound during the membrane forming process and/or by a re-treatment of the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention also relates to methods for producing said membranes and to various uses for membranes of this type.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
The invention relates to producing monomer, oligomer and polymer non-fluorinated, partially fluorinated or perfluorinated sulphonic acids by reacting halogenated, low-molecular weight, oligomer or macromolecular arenes with (hydrogen) sulphites, dithionites, sulphides or other reducing sulfur salts, possibly by oxidising sulphur-containing arene intermediates which are formed at a sulphur oxidation degree less than +6 by means of appropriate oxidation agents with formation of corresponding sulphonate functional groups (sulphonic acid, sulfohalogenide, sulphonamide and sulphonic acid ester groups). The invention also relates to a method for producing monomer, oligomer or polymer non-halogenated, partially halogenated or perhalogenated phosphonic acid esters and the derivatives thereof (for example, a free phosphonic acid or a phosphonic acid salt) by a nucleophile aromatic substitution (Michaelis-Becker-reaktion, complete or partial substitution of halogenide functional groups by phosphate functional groups (phosphonic acid esters, phosphonic acid amides, phosphonic acids, phosphonic acid salts, phosphonic acid halogenides). Said invention also relates to a method for producing polymer or ionomer non-halogenated, partially halogenated or perhalogenated containing (CF2)xPO(OR)2— or (CF2)xSO2Me- or (CF2)xSO3Me- side chains, (wherein x=1-20, R=any organic radical, Me=any monovalent cation). A method for carrying out a nucleophile polycondensation of said functionalised (i.e. sulphonated, sulphonated or phosphonated) monomers into oligomers or polymers is also disclosed.
Abstract translation:本发明涉及通过卤代,低分子量,低聚物或大分子芳烃与(氢)亚硫酸盐,连二亚硫酸盐,硫化物或其它还原硫盐反应制备单体,低聚物和聚合物非氟化的,部分氟化的或全氟化的磺酸,可能通过 通过形成相应的磺酸盐官能团(磺酸,磺基卤化物,磺酰胺和磺酸酯基团)的合适的氧化剂,氧化含硫芳烃中间体,它们以小于+6的硫氧化度形成。 本发明还涉及通过亲核试剂芳香取代产生单体,低聚物或聚合物非卤代,部分卤化或全卤代膦酸酯及其衍生物(例如游离膦酸或膦酸盐)的方法(Michaelis - 磷酸酯官能团(膦酸酯,膦酸酰胺,膦酸,膦酸盐,膦酸卤化物)完全或部分取代卤化物官能团的方法本发明还涉及聚合物或离聚物的制备方法 (CF 2)x SO 2 Me-或(CF 2)x SO 3 Me侧链,(其中x = 1-20,R =任何有机基团,Me =任何 还公开了将所述官能化(即磺化,磺化或膦酸化)单体进行亲核物缩聚成低聚物或聚合物的方法。
Abstract:
The invention relates to novel polymers or oligomers containing at least sulfonite groups (P—(SO2)nX, X=1−(n=1), 2−(n=2) or 3−(n=3) valent metal cation or H+ or ammonium ion NR4+ where R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y═F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyl, N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution form. The invention also relates to polymers and polymer(blend) membranes which are obtained by further reacting the obtained sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
The present invention relates to ionically and covalently cross-linked polymers and polymer membranes having recurrent units of the general formula (1), wherein Q is a link, oxygen, sulfur, (2) or (3) and the R radical is a divalent radical of an aromatic or heteroaromatic compound, and which are characterized in that a) R radical comprises at least partially substituents of general formula (4A), (4B), (4C), (4D), (4E), (4F), (4G) and/or (4H), b) R radical comprises at least partially substituents of the general formula (5A) and/or (5B) and/or the R radical is at least partially a group of the general formula (5C) and/or (5D) and c) the R radical comprises at least partially bridges of the general formula (6) linking at least to R radicals together, R1, R2, R3, R4, R5, M, X, Y, Z and m having the herein-mentioned meanings.
Abstract:
The present invention relates to polymer blends and polymer blend membranes which consist of a polymeric sulfonic acid and of a polymer which contains primary, secondary or tertiary amino groups, which are prepared via mixing of a salt of the polymeric sulfonic acid with the polymer which contains primary, secondary or tertiary amino groups. The invention further relates to the use of polymer blend membranes in membrane fuel cells, polymer electrolyte membrane fuel cells (PEM fuel cells) or direct methanol fuel cells (DMFC), in membrane electrolysis, in aqueous or non-aqueous electrodialysis, in diffusion dialysis, in the perstractive separation of alkenes from alkene/alkane mixtures (here the membranes are in the SO3Ag form, where the Ag+ forms a reversible complex with the alkene (→facilitated transport)), in pervaporative separation of water from water/organics mixtures, or in gas separation.