Abstract:
The invention relates to novel polymers or oligomers containing at least sulfinate groups (P-(SO2)nX, X=1-(n=1), 2-(n=2) or 3-(n=3) valent metal cation or H+ or ammonium ion NR4+ where R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y═F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyL N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution formPolymer and polymer(blend)membranes which are obtained by further reacting the received sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.
Abstract:
The invention relates to polymers obtained by S-alkylation of sulfinated polymers with alkylation agents, and AB-cross-linked polymers obtained by reacting polymers containing alkylation groups with low-molecular sulfinates, under S-alkylation, or AB-cross-linked polymers obtained by S-alkylation of sulfinated polymers with polymers containing alkylation groups.
Abstract:
The invention relates to novel polymers or oligomers containing at least sulfonite groups (P-(SO2)nX, X=1−(n=1), 2−(n=2) or 3−(n=3) valent metal cation or H+ or ammonium ion NR4+ wherein R=alkyl, aryl, H), which are obtained by completely or partially reducing polymers or oligomers containing at least SO2Y-groups (Y=F, Cl, Br, I, OR, NR2 (R=alkyl and/or aryl and/or H), N-imidazolyl, N-pyrazolyl) by means of suitable reducing agents in a suspension or in a solution form. The invention also relates to polymers and polymer(blend) membranes which are obtained by further reacting the obtained sulfinated polymers, especially by alkylation of the sulfinate groups with mono- di- or oligo functional electrophiles. The invention further relates to methods for producing the sulfinated polymers and for further reacting the sulfinated polymers with electrophiles by S-alkylation.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
Various blends and blend membranes from low-molecular hydroxymethylene-oligo-phosphonic acids R—C(PO3H2)x(OH)y and polymers, the group R representing any organic group, the polymers containing cation exchanger groups or their nonionic precursors of the type SO2X, X being a halogen, OH, OMe, NR1R2, OR1 with Me being any metal cation or ammonium cation, R1, R2 being H or any aryl- or alkyl group, PDX2, COX and/or basic groups such as primary, secondary or tertiary amino groups, imidazole groups, pyridine groups, pyrazole groups etc. and/or OH groups. Such membranes may also include polymers that are modified with the 1-hydroxymethylene-1,1-bisphosphonic acid group. The polymers may be formed by reacting polymers which contain carboxylic acid groups or carboxylic halide groups —COHal (Hal=F, Cl, Br, I) with phosphite compounds or by reacting polymeric aldehydes or polymeric keto compounds with phosphite esters while carrying out an amine catalysis, an oxidation of the intermediary hydroxyphosphonic acid with MnO2 or another oxidant.
Abstract:
In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
The invention relates to the following types of composite membranes; composites or composite membranes obtained by adding a metal salt, e.g. from ZrOCl2, to a solvent, especially DMSO, for dissolving one or more polymers in an organic solvent or in aqueous systems, in addition to the subsequent precipitation in the matrix of the thus produced composite-membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention also relates to composites or composite membranes obtained by subsequent ion exchange of finished polymer membranes with a suitable salt cation, especially ZrO2+, wherein the polymer membrane is, optionally, swollen with an organic solvent or a mixture of organic solvent with water prior to the ion exchange and the subsequent precipitation of a low soluble salt, e.g. from Zr3(PO4)4, in the membrane by post-treatment thereof in an acid or in a salt solution, especially phosphoric acid. The invention further relates to composites or composite membranes obtained by adding nano-scaled Zr3(PO4)4 powder to a polymer solution, composites and composite membranes obtained according to the above-mentioned methods, wherein additional heteropoly acids are also incorporated into the polymer or membrane morphology, in addition to methods for producing said inventive polymers and membranes.
Abstract:
The invention relates to a composite or a composite membrane consisting of an ionomer and of an inorganic optionally functionalized phyllosilicate. The isomer can be: (a) a cation exchange polymer; (b) an anion exchange polymer; (c) a polymer containing both anion exchanger groupings as well as cation exchanger groupings on the polymer chain; or (d) a blend consisting of (a) and (b), whereby the mixture ratio can range from 100% (a) to 100% (b). The blend can be ionically and even covalently cross-linked. The inorganic constituents can be selected from the group consisting of phyllosilicates or tectosilicates.
Abstract:
The present invention pertains to a process for the cross-linking of modified engineering thermoplastics, in particular, of polymeric sulfinic acids or sulfinic acid salts. In particular, the invention pertains to a process for the preparation of cross-linked polymers, characterized in that solutions of polymeric sulfinic acids or sulfinic acid salts (—SO2Me), optionally in the presence of organic di- or oligohalogeno compounds [R(Hal)x], are freed from solvent and cross-linked to polymers, wherein Me stands for a monovalent or polyvalent metal cation; R stands for an optionally substituted alkyl or aryl residue containing from 1 to 20 carbon atoms; and Hal stands for F, Cl, Br or I.