Abstract:
Minimum-memory-implementation is available with any depth and period in DSL interleaving/deinterleaving, always allowing the minimum amount of memory to be used in both transmitter and receiver without loss of performance or of basic triangular structure, even if the interleaver/deinterleaver parameters change dynamically. A novel cell-scheduling process ensures availability of the minimum amount of memory (or any other desired memory usage) to implement an image of the perfect triangle and works for any co-prime depth and interleaver period. Minimal memory use may be further characterized by a simple off-line method that determines an addressing order for each of the memory cells in a minimum-memory (or other) implementation of an interleaver/deinterleaver according to the invention. Time variation of interleaver depth in operation can be accommodated easily with absolute minimum memory requirement at all time instants.
Abstract:
Loading and ordering techniques are provided for one-sided and two-sided vectored line groups, as well as loading methodologies that also can be used on a single line, in communication systems such as DSL binders. For single-user lines, bits and energy are optimally allocated for a given set of parameters, which may include maximum rate, minimum rate, maximum margin, target margin, minimum margin and PSD mask of any shape. Iterations, bit-swapping during loading or adaptive margin update during loading can be used in single-user loading, which has low complexity and can be used for a variety of loading objectives and/or goals, such as rate-adaptive, margin-adaptive and fixed-margin objectives. For multi-user vectoring systems, ordering as well as loading is provided for a supplied rate-tuple within a rate region, determining acceptable user loadings and orderings so that the rate-tuple can be implemented. For one-sided vectored DSL, some loading and ordering determines acceptable allocations of bits, energy and decoding/precoding ordering(s) for each tone of each user for a specified set of rates on the vectored lines. PSD determination, ordering and bit allocation can be iteratively used in multi-user loading and ordering and can augment and alter the criteria used for bit swapping procedures used in single lines (or in bonded multiple lines for a single user) so that a favorable vector of rates is achieved for all users. Order swapping can adjust a bit vector and/or rate vector within a constant-rate-sum convex subset of a hyperplane towards the desired vector of user rates for each of the lines.
Abstract:
Transitions between states and/or profiles for a line in a communication system, such as a DSL system, are controlled by evaluating the current state of the line and one or more target states. Evaluation of the feasibility of staying in the current state or moving to one of the target states can be based on distributions of reported and estimated data distilled from operational data collected from the communication system. The target states may be prioritized and arranged in a matrix. Feasibility may take into account both the sufficiency of available data and the line's likely behavior in the current state and any potential target state. Probabilities of meeting operational and/or performance thresholds can be used in various sub-rules whose outputs can be combined in an overall rule that provides a feasibility or infeasibility decision. Old data can be weighted or completely purged to control its influence on a potential transition. In a DSL system these weightings, sub-rules and other factors may reflect differences between upstream and downstream behavior and data transmission. Changing line conditions, performance goals, etc. can be accommodated by adjusting and/or updating sub-rules, rules, threshold tables, vectors, matrices, etc. adaptively or dynamically. Methods, techniques, apparatus, processes and equipment according to embodiments of the present invention may be implemented in a controller, DSL optimizer or the like. Such implementation may be part of a dynamic spectrum management system.
Abstract:
Operational data is utilized to determine the FEXT interference induced by one line into the other DSL line. FEXT interference can be calculated using the NEXT interference measured between the two lines at the upstream ends of the loops and the downstream channel transfer function of one of the loops. Because the NEXT and transfer function constitute a linear time-invariant system, as does the FEXT interference between the lines, the NEXT interference and line transfer function can be multiplied (if in linear format) or added (if in logarithmic format) to approximate the FEXT interference between the lines. The collection of data, calculations and other functions performed in these techniques may be performed by a system controller, such as a DSL optimizer. An Xlog(u,n) quantity is a decibel-magnitude representation of the insertion-loss equivalent of FEXT transfer functions and is defined as the ratio of (1) a line u's source power into a matched load of 100 Ohms when no binder is present to (2) the power at the output of the subject line when line u is excited with the same source and the binder is present. Xlin(u,n) is the linear equivalent of Xlog(u,n). The Xlog(u,n) and Xlin(u,n) quantities may be represented in specific formats that assist in their use in DSL and other systems. When defined as a line's insertion loss, Xlin (or equivalently Xlog) does not include the effect of any transmit filter.
Abstract:
An improved discrete multi-tone transmission scheme is describe that contemplates encoding digital data and modulating the encoded data onto a discrete multi-tone signal having a total bandwidth of at least 1.6 MHz. In some embodiments bandwidths of 8 MHz or more are provided. The modulation system is capable of dynamically updating the subcarriers used and the amount of data transmitted on each subcarrier during transmission in order to accommodate real time changes in the line quality over particular subcarriers. In one preferred embodiment of the invention the multi-tone encoding and modulation is done in substantial compliance with the ATIS North American Asymmetric Digital Subscriber Lines standard. However, additional subchannels (such as a total of 512 subchannels) may be used and/or subchannel bandwidths of greater than 4.3125 kHz may be used. In this system, the subchannels that occur at frequencies above those set forth in the standard are treated similarly to those within the standard range in terms of subcarrier selection criteria. The described system permits transmission of digital data at transmission rates of six to 55 Mbps over twisted pair telephone lines at distances of 1200 meters even on lines that experience significant crosstalk noise such as T1 or E1. In another application, the invention may be used with ordinary telephone lines such as twisted pair lines to transmit data to remote receivers located up to 2000 meters from the transmitter at digital data transmission rates of at least ten to fifty million bits per second (10-50+ Mbps). With such an arrangement, the bandwidth available for upstream communications may also be increased.
Abstract:
An improvement in the preparation of printed circuits comprises inserting a deformable layer between the phototool or support layer, and the solder mask. The deformable layer provides a uniform, integral and relatively thin coating of solder mask over circuit components, and results in higher-quality solder joints and lower rejection rates for finished boards.
Abstract:
In accordance with embodiments disclosed herein, there are provided methods, systems, mechanisms, techniques, and apparatuses for traffic aggregation on multiple WAN backhauls and multiple distinct LAN networks; for traffic load balancing on multiple WAN backhauls and multiple distinct LAN networks; and for performing self-healing operations utilizing multiple WAN backhauls serving multiple distinct LAN networks. For example, in one embodiment, a first Local Area Network (LAN) access device is to establish a first LAN; a second LAN access device is to establish a second LAN; a first Wide Area Network (WAN) backhaul connection is to provide the first LAN access device with WAN connectivity; a second WAN backhaul connection to provide the second LAN access device with WAN connectivity; a management device is communicatively interfaced with each of the first LAN access device, the second LAN access device, the first WAN backhaul connection, and the second WAN backhaul connection; and the management device routes a first portion of traffic originating from the first LAN over the first WAN backhaul connection and routes a second portion of the traffic originating from the first LAN over the second WAN backhaul connection.
Abstract:
A Digital Subscriber Line (DSL) Management Center (DMC) coupled to a DSL network includes a data collection module that receives information regarding the DSL network from a plurality of sources. An analysis module is coupled to the data collection module to analyze the received information and issue a command for one or more of a plurality of DSL performance enhancement devices to optimize their operation. A command signal generation module is coupled to the analysis module to receive the issued command from the analysis module and generate a corresponding command signal for transmission to one or more of the DSL performance enhancement devices.
Abstract:
An adaptive interference cancellation system is described. In one example the system operates by receiving a data signal using a DSL (Digital Subscriber Line) and receiving a reference signal, the reference signal corresponding, in part, to noise on the data signal. The reference signal is classified and a noise cancellation signal is applied to the data signal based on the classification.
Abstract:
An apparatus for demodulating a coded orthogonal frequency division multiplexing (OFDM) signal in a coded OFDM receiver. The coded OFDM signal comprises systematic bits, error control bits, and a cyclic prefix. The apparatus performs channel estimation quickly and accurately using the error control bits, the channel spread constraint, and the cyclic prefix portion of the received coded OFDM signal.