摘要:
A lift mechanism diagnostic system comprises a fuel pump disabling module, a pressure module, and a diagnostic module. The fuel pump disabling module selectively disables a fuel pump that is driven by a camshaft. The pressure module determines a first pressure of fluid provided to a variable valve lift mechanism when the variable valve lift mechanism is operated in a first lift mode while the fuel pump is disabled and determines a second pressure of the fluid when the variable valve lift mechanism is operated in a second lift mode while the fuel pump is disabled. The diagnostic module selectively diagnoses a fault in the variable valve lift mechanism based on the first and second pressures.
摘要:
An engine control system comprises a fuel pump control module and a diagnostic module. The fuel pump control module controls a pressure pump to inject fuel into a fuel rail. The diagnostic module determines an estimated pressure increase within the fuel rail based on the injected fuel, compares an actual pressure increase within the fuel rail to the estimated pressure increase, and indicates when the actual pressure increase is less than the estimated pressure increase.
摘要:
An engine control system includes a cam phaser that introduces a cam phase angle θ between a camshaft intake lobe and an associated crankshaft. An engine control module communicates with the cam phaser to introduce the cam phase angle θ while an engine is being started. The cam phase angle θ is selected such that the camshaft intake lobe opens an intake valve during at least a portion of a compression stroke of a cylinder that is associated with the camshaft intake lobe.
摘要:
A diagnostic system for an engine includes a pressure monitoring module that determines a plurality of first average pressure values and a plurality of second average pressure values of a fluid supply provided to a camshaft phaser. A diagnostic module identifies one of a plurality of cylinders associated with a failed variable valve lift mechanism based on the first and the second average pressure values. Each of the first and the second average pressure values respectively correspond to each of the plurality of cylinders.
摘要:
A control module may include a cam phaser control module, a cam phaser oil pressure determination module, and a system oil pressure prediction module. The cam phaser control module may control an oil control valve (OCV) to control an oil flow to a cam phaser. The cam phaser oil pressure determination module may be in communication with the cam phaser control module and may determine a first engine oil pressure at a location between the OCV and the cam phaser when the OCV is in a open position. The system oil pressure prediction module may determine a second engine oil pressure at a location between the OCV and an oil pump outlet based on the first engine oil pressure.
摘要:
A camshaft phasor control system for an engine includes a camshaft position sensor that generates a current camshaft position signal based on position of a camshaft. A first comparator generates a camshaft position signal based on the current camshaft position signal and a crankshaft position. The second comparator generates an error signal based on the relative camshaft position signal and a commanded camshaft position signal. A control module determines a current control hold duty cycle (CHDC) for a camshaft phasor based on an engine state parameter. The control module also generates a correction signal based on the error signal, adjusts the current CHDC based on the correction signal to generate a commanded CHDC signal, and generates another CHDC based on the commanded CHDC signal.
摘要:
A control decreases dilution (EGR) in an internal combustion engine from a schedule if surge is detected and allows it to return to the schedule in the absence of surge. Surge is detected by timing a predetermined crank angle of 70-10 degrees BTDC, an angle including only crank deceleration, for consecutive engine firings, updating an average time therewith and computing the difference between the new time and the average. The successive differences are examined for zero crossings and compared to a stored maximum difference. If difference exceeds the maximum it becomes the new maximum difference. If a zero crossing is detected, the time since the last zero crossing is calculated to determine if the difference variations have a frequency of 2-10 Hz. If so, and the maximum difference exceeds a reference, a surge signal is generated.
摘要:
A dilution control adjusts an EGR valve, variable valve lift mechanism or similar dilution control device in an internal combustion engine in response to the relationship between ignition timing and the timing of peak combustion pressure (LPP) in the vicinity of a desired timing of peak combustion pressure (DLPP). The relationship is derived in the process of controlling ignition timing in response to LPP, wherein LPP is controlled to DLPP or as close to it as possible. In this process, LPP varies slightly back and forth through DLPP or through a maximum retard value, if LPP is not attainable. The apparatus detects whether LPP is retarded with respect to DLPP as it reverses from retard to advance, increases dilution if it is so retarded and decreases dilution if it is not. The engine thus operates with maximum EGR consistent with LPP being equal to the desired value DLPP.
摘要:
An internal combustion engine with a throttle valve, fuel supply and dilution (EGR) control includes apparatus effective to detect a throttle tipout condition comprising a rate of throttle closing exceeding a predetermined reference rate and decrease the dilution from the scheduled value to its minimum value during the existence of the throttle tipout condition and further apparatus effective to detect the end of the throttle tipout condition and return the dilution to its scheduled value at a controlled rate. Thus, a sudden unscheduled increase in dilution caused by a throttle tipout associated increase in intake manifold vacuum is reduced and driveability improved.
摘要:
A method and control module includes a control hold duty cycle module generating a control hold duty cycle signal and a voltage correction module generating a voltage correction signal. The control module also includes a correction module generating a corrected proportional correction signal based on a proportional correction signal and the voltage correction signal, and generating a corrected integral correction signal based on an integral correction signal and the voltage correction signal. The control module also includes a force determination module controlling a duty cycle to a phaser operator based upon the control hold signal, the corrected proportional correction signal and the corrected integral correction signal.