Abstract:
A resource usage optimization server determines a degradation caused by a first resource. The resource usage optimization server determines a cleaning caused by a second resource. The resource usage optimization server calculates a ratio of the degradation and the cleaning.
Abstract:
A resource usage optimization server determines a degradation caused by a first resource. The resource usage optimization server determines a cleaning caused by a second resource. The resource usage optimization server calculates a ratio of the degradation and the cleaning.
Abstract:
An apparatus and method for inspecting wafers at a reclaim factory is described. Embodiments of the invention describe an apparatus in which a wafer ID and wafer thickness may be simultaneously measured. A wafer is placed onto a sloped surface and positioned by aligning a notch in the wafer with a pin located on the surface, and by propping the wafer against a pair of laterally opposite restraints. In one embodiment, a foot-switch is used to trigger the simultaneous wafer ID and wafer thickness measurements.
Abstract:
A wafer comprising a low-k dielectric layer is refurbished for reuse. Initially, a removable layer is provided on the wafer. The low-k dielectric layer is formed over the removable layer. The overlying low-k dielectric layer is removed from the wafer by etching away the removable layer by at least partially immersing the wafer in an etching solution. Thereafter, another low-k dielectric layer can be formed over another removable layer.
Abstract:
A method of treating a substrate comprises depositing silicon oxycarbide on the substrate and removing the silicon oxycarbide from the substrate. The silicon oxycarbide on the substrate is decarbonized by exposure to an energized oxygen-containing gas that heats the substrate and converts the layer of silicon oxycarbide into a layer of silicon oxide. The silicon oxide is removed by exposure to a plasma of fluorine-containing process gas. Alternatively, the remaining silicon oxide can be removed by a fluorine-containing acidic bath. In yet another version, a plasma of a fluorine-containing gas and an oxygen-containing gas is energized to remove the silicon oxycarbide from the substrate.
Abstract:
Test substrates used to test semiconductor fabrication tools are reclaimed by reading from a database the process steps performed on each test substrate and selecting a reclamation process from a plurality of reclamation processes. The reclamation process can include crystal lattice defect or metallic contaminant reduction treatments for reclaiming each test substrate. Each test substrate is sorted and placed into a group of test substrates having a common defect or contaminant reduction treatment assigned to the test substrates of the group. Additional features are described and claimed.
Abstract:
A method of treating a substrate comprises depositing silicon oxycarbide on the substrate and removing the silicon oxycarbide from the substrate. The silicon oxycarbide on the substrate is decarbonized by exposure to an energized oxygen-containing gas that heats the substrate and converts the layer of silicon oxycarbide into a layer of silicon oxide. The silicon oxide is removed by exposure to a plasma of fluorine-containing process gas. Alternatively, the remaining silicon oxide can be removed by a fluorine-containing acidic bath. In yet another version, a plasma of a fluorine-containing gas and an oxygen-containing gas is energized to remove the silicon oxycarbide from the substrate.
Abstract:
The present invention provides exemplary methods, systems and apparatus that provide improved substrate characteristics after grinding operations by avoiding or reducing overgrind damage to the wafers. In one embodiment, a grinding apparatus (100) includes a first spindle (110) having an eccentric-shaped abrasive matrix (112) coupled thereto and a second spindle (116) adapted to hold a substrate (118) to be ground. The second spindle is offset from said first spindle such that the abrasive matrix passes through the substrate surface center (134) for only a portion of the time during grinding operations.
Abstract:
A method and system for factory resource optimization identification is described herein. In one embodiment, an expected usage rate is determined for a resource in a manufacturing facility and an actual usage rate is determined for the resource in the manufacturing facility. A comparison between the expected usage rate and the actual usage rate is facilitated. A determination is made, based on the comparison, of whether a variance between the expected usage rate and the actual usage rate exceeds a threshold. A notification is provided if the variance exceeds the threshold.
Abstract:
A silicon-on-insulator transfer wafer having a front surface with a circumferential lip around a circular recess is polished. In one version, the circular recess on the front surface of the wafer is masked by filling the recess with spin-on-glass. The front surface of the wafer is exposed to an etchant to preferentially etch away the circumferential lip, while the circular recess is masked by the spin-on-glass. The spin-on glass is removed, and the front surface of the transfer wafer is polished. Other methods of removing the circumferential lip include applying a higher pressure to the circumferential lip in a polishing process, and directing a pressurized fluid jet at the base of the circumferential lip.