Abstract:
Disclosed is a unit cell of a honeycomb-type solid oxide fuel cell (SOFC) having a plurality of channels. The channels include cathode channels and anode channels. The cathode channels and anode channels are set up alternately in the unit cell. A collector is installed inside each of the cathode channels and the anode channels, and a packing material is packed into the channels having the collector. Disclosed also is a stack including the unit cells and methods for manufacturing the unit cell and the stack.
Abstract:
Disclosed is an assembled helical turbine system, which can strengthen weakenings of a housing assembly, and simultaneously can be easily assembled/disassembled. The assembled helical turbine system comprises the housing assembly including a plurality of bearing spiders for rotatably supporting a rotating shaft of a helical turbine, and a plurality of side posts for connecting and fixing the respective bearing spiders to each other, the side posts being fixed in such a manner as to radially protrude by a predetermined length from peripheral surfaces of the bearing spiders; filling members for filling and reinforcing spaces between the peripheral surfaces of the bearing spiders and outlines of protruding portions of the side posts; and a housing supporter for supporting the housing assembly in such a manner that the housing assembly can be inserted into and withdrawn from the housing supporter, the housing supporter having catch grooves that are recessed in a shape corresponding to stoppers.
Abstract:
A helical turbine power generation system is configured to generate electricity by using a helical turbine and an overload prevention generator. More specifically, the helical turbine is rotatably provided in a frame so as to continuously generate a rotation force under unidirectional or multidirectional fluid flow and a step-up gear is configured to increase the rotational velocity of the helical turbine up to a level required for generating electricity. Additionally, an overload prevention generator is incorporated to generate electricity by using the rotational velocity transferred from the step-up gear thereby preventing an overload caused by a sudden increase in the rotational velocity of the turbine.
Abstract:
Disclosed is an assembled helical turbine system, which can strengthen weakenings of a housing assembly, and simultaneously can be easily assembled/disassembled. The assembled helical turbine system comprises the housing assembly including a plurality of bearing spiders for rotatably supporting a rotating shaft of a helical turbine, and a plurality of side posts for connecting and fixing the respective bearing spiders to each other, the side posts being fixed in such a manner as to radially protrude by a predetermined length from peripheral surfaces of the bearing spiders; filling members for filling and reinforcing spaces between the peripheral surfaces of the bearing spiders and outlines of protruding portions of the side posts; and a housing supporter for supporting the housing assembly in such a manner that the housing assembly can be inserted into and withdrawn from the housing supporter, the housing supporter having catch grooves that are recessed in a shape corresponding to stoppers.
Abstract:
A signal transmission film includes a conductive pattern having a resin-extruding path making contact with an anisotropic conductive film including a resin so that the resin is extruded through the resin-extruding path for providing a stable connection. Alternatively, the resin-extruding path is provided in a signal providing pattern on a display panel. Also, a flexible printed circuit includes a gate driving terminal having at least two sub terminals electrically connected to each other. Each of the sub terminals is electrically connected to a gate driving control signal pad of a liquid crystal display panel for enhancing contact stability.
Abstract:
A display apparatus includes a backlight assembly, a first display panel assembly and a second display panel assembly. The backlight assembly includes a plurality of lamps disposed substantially parallel with each other. The backlight assembly emits first light through a first face and second light through a second face. The first display panel assembly is disposed adjacent to the first face to receive the first light. The second display panel assembly is disposed adjacent to the second face to receive the second light. The backlight assembly may further include a driving inverter electrically connected to first and second ends of the lamps to provide the lamps with driving voltages. Therefore, the backlight assembly applies light to the first and second display panel assemblies to reduce the number of backlight assemblies. Therefore, costs for manufacturing a display apparatus may be reduced.
Abstract:
Disclosed is a helical turbine power generation system for generating electricity by using a helical turbine and an overload prevention generator, the system including: a helical turbine rotatably provided in a frame so as to continuously generate rotation force under unidirectional or multidirectional fluid flow; a step-up gear for increasing a rotational velocity of the helical turbine up to a level required for generating electricity; and an overload prevention generator for generating electricity by using the rotational velocity transferred from the step-up gear, and for preventing overload caused by a sudden increase in a rotational velocity. Therefore, it is possible to reduce equipment costs and to prevent environmental pollution.
Abstract:
A thinner composition is provided which includes about 60-80% by weight of propylene glycol mono-alkyl ether having a boiling point of T1° C., about 10-30% by weight of alkyl acetate having a boiling point of T2° C., and about 1-10% by weight of a solvent. The solvent has a boiling point of T3° C. and satisfies the equation (1). T2
Abstract:
A thinner composition is provided which includes about 60-80% by weight of propylene glycol mono-alkyl ether having a boiling point of T1° C., about 10-30% by weight of alkyl acetate having a boiling point of T2° C., and about 1-10% by weight of a solvent. The solvent has a boiling point of T3° C. and satisifes the equation (1). T2
Abstract:
A liquid crystal display device includes a liquid crystal panel including a pad electrode, a tape circuit substrate and an anisotropic conductive film. The pad electrode receives one of a driving signal and a power supply voltage signal. The tape circuit substrate includes a base film made of an insulating material, and a signal line formed on the base film and having a slit at a portion of the signal line which overlaps the pad electrode of the liquid crystal panel. The anisotropic conductive film connects the outer lead with the pad electrode.