Abstract:
The attenuation and other optical properties of a medium are exploited to measure a thickness of the medium between a sensor and a target surface. Disclosed herein are various mediums, arrangements of hardware, and processing techniques that can be used to capture these thickness measurements and obtain dynamic three-dimensional images of the target surface in a variety of imaging contexts. This includes general techniques for imaging interior/concave surfaces as well as exterior/convex surfaces, as well as specific adaptations of these techniques to imaging ear canals, human dentition, and so forth.
Abstract:
Various improvements to inflatable membranes for use in three-dimensional imaging of interior spaces are disclosed. These improvements include, among other things, equipping the inflatable membrane with desirable optical features, such as fiducials, optical coatings, etc., that can be used to improve data acquisition.
Abstract:
Various improvements to inflatable membranes are disclosed. These improvements include, among other things, features on the membrane that can mitigate hazards such as bubble formation or frictional damage during inflation of the membrane.
Abstract:
The attenuation and other optical properties of a medium are exploited to measure a thickness of the medium between a sensor and a target surface. Disclosed herein are various mediums, arrangements of hardware, and processing techniques that can be used to capture these thickness measurements and obtain dynamic three-dimensional images of the target surface in a variety of imaging contexts. This includes general techniques for imaging interior/concave surfaces as well as exterior/convex surfaces, as well as specific adaptations of these techniques to imaging ear canals, human dentition, and so forth.
Abstract:
An apparatus and method for providing controlled heating, cooling and motion, in a device such as an active robotic automobile seat, are disclosed. A shape memory alloy (SMA) element, which changes shape upon application of a temperature change to the SMA element, is coupled to a thermoelectric device. Heat flows through the TED upon application of an electrical current through the TED. The apparatus is operable in one of a plurality of modes. In a first mode, a current is applied through the TED to cause a temperature change in the SMA element to change the shape of the SMA element. In a second mode, a current is applied to the TED to cause heat flow in a space adjacent to the apparatus. By controlling application of current to the TED, controlled motion, heating and cooling are achieved in the seat.