Abstract:
Methods for inhibiting the growth of tumor cells by combination treatment with a selenium-containing prodrug and an enzyme for which it is a substrate are described. The treatment also enhances the effect of anti-tumor agents.
Abstract:
Infection by P. carinii can be treated by administering methioninase optionally in combination with additional therapeutic agents, such as antibiotics.
Abstract:
A method to assess the level of folate in a biological sample comprises: providing said sample with glycine N-methyltransferase (GMT) and with an excess of S-adenosyl methionine (SAM) and of glycine; providing a control which contains no folate with said GMT and excess SAM and glycine in comparable amounts to those provided to the sample; and comparing the concentration of at least one product formed in the sample with the concentrations of said product formed in the control, whereby the difference in levels of said product in the sample as compared to the control is directly proportional to the level of folate in the sample.
Abstract:
Novel enzymatic methods to determine the concentration of homocysteine in biological fluids are described. In a typical embodiment of the invention, the biological fluid sample is from a patient, and the methods of the invention are useful to assess risk for cardiovascular disease. The novel methods of the invention involve use of particular homocysteinase enzymes that permit the determination of homocysteine concentrations in biological samples without interference from the concentrations of cysteine and/or of methionine that are routinely present in such samples. There is also provided a diagnostic kit for use in determining the amount of homocysteine in a biological sample comprising (a) a homocysteinase having the aforementioned characteristics, and (b) at least one reagent capable of being used to determine the amount of product formed in the homocysteinase reaction. In a further aspect, the homocysteinase is provided as a chimeric molecule that comprises amino acid subsequences derived from, or patterned on, more than one homocysteinase, and which is typically produced from a chimeric polynucleotide that encodes therefor. Additional enhancements in homocysteine assay methodology include use of the enzyme .gamma.-glutamylcysteine synthetase to further limit any interference from cysteine present in the biological samples.
Abstract:
The present invention describes methods for using methioninase as an antitumor reagent in anti-methionine chemotherapy. Specifically, methioninase is used to slow or stop cell division which can be enhanced with competitive inhibitors of methionine. In addition, methioninase can be used in combination with chemotherapeutic agents to increase the therapeutic effectiveness of the agent by inducing cell cycle synchronization.
Abstract:
Methods of obtaining faithful expression libraries from tissue samples comprise extraction of RNA from intact tissue cultured in three-dimensional sponge-gel based histocultures.
Abstract:
Infection by P. carinii can be treated by administering methioninase optionally in combination with additional therapeutic agents, such as antibiotics.
Abstract:
A method is described to identify secreted proteins identified with stages of malignancy of cancer. The proteins are initially identified by trapping them with a fluorescent protein containing vector that can insert in any gene. The secreted proteins are initially identified by their fluorescence. Secreted proteins identifying tumors with specific degrees of malignancy are isolated to determine if they can serve as markers of cancer progression.
Abstract:
A method to determine a total cysteine in biological fluids utilizes similarly treated portions of the fluid with a homocysteinase and a non-specific desulfurase.
Abstract:
Living cells can be stably modified to emit different colors from the cytoplasm and nucleus, thus permitting analysis of the status of said cells and the effect of agents on said cells either by visual or instrumentally-aided observation. These observations may be made, if desired, in real time. In addition, rates of proliferation and drug sensitivities can be determined in vitro in real time by the use of cells modified to express a single fluorescent protein and observing fluorescence intensity as a function of time.