Abstract:
Systems and apparatus for ionic liquid catalyzed hydrocarbon conversion may comprise a modular reactor comprising a plurality of mixer modules. The mixer modules may be arranged in series. One or more feed modules may be disposed between the mixer modules. Such systems may be used for ionic liquid catalyzed alkylation reactions. Processes for ionic liquid catalyzed hydrocarbon conversion are also disclosed.
Abstract:
Systems, apparatus, and methods for distributing a mixed phase fluid to a monolith catalyst bed within a reactor, wherein a mixed phase fluid may be generated by a nozzle tray comprising a plurality of nozzles, the mixed phase fluid may be distributed by the nozzles to a mixed phase distributor system, and the mixed phase fluid may be further distributed by the mixed phase distributor system to a plurality of monolith channels within the reactor.
Abstract:
Systems, apparatus, and methods for distributing a mixed phase fluid to a monolith catalyst bed within a reactor, wherein a mixed phase fluid may be generated by a nozzle tray comprising a plurality of nozzles, the mixed phase fluid may be distributed by the nozzles to a mixed phase distributor system, and the mixed phase fluid may be further distributed by the mixed phase distributor system to a plurality of monolith channels within the reactor.
Abstract:
A memory storage structure includes a memory storage device, and a first meta-structure having a first size and operating at a first speed. The first speed is faster than a second speed for storing meta-information based on information stored in a memory. A second meta-structure is hierarchically associated with the first meta-structure. The second meta-structure has a second size larger than the first size and operates at the second speed such that faster and more accurate prefetching is provided by coaction of the first and second meta-structures. A method is provided to assemble the meta-information in the first meta-structure and copy this information to the second meta-structure, and prefetching the stored information from the second meta-structure to the first meta-structure ahead of its use.
Abstract:
A continuous process is provided for preparing alkanolamines having a high yield of monoalkanolamine, which comprises continuously reacting a flowing stream of a homogeneous mixture of an alkylene oxide having from two to four carbon atoms and ammonia in a molar ratio of ammonia to alkylene oxide within the range from about 15:1 to about 50:1 at temperatures above the critical temperature of the mixture and at pressures above the critical pressure of the mixture and maintaining the mixture in a single phase having a density of at least 15 lbs./cu.ft. for the time necessary to form an alkanolamine product mixture containing at least about 65% by weight monoalkanolamine.
Abstract:
Systems for ionic liquid catalyzed hydrocarbon conversion comprise a reactor vessel, a mixing device in fluid communication with the reactor vessel, and at least one circulation loop in fluid communication with the reactor vessel and the mixing device. The mixing device may comprise an upper venturi, at least one feed injection component, and a lower venturi. Such systems may be used for ionic liquid catalyzed alkylation reactions. Processes for ionic liquid catalyzed hydrocarbon conversion are also disclosed.
Abstract:
Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
Abstract:
Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
Abstract:
Ionic liquid alkylation processes may comprise contacting at least one hydrocarbon stream with an ionic liquid catalyst in an ionic liquid alkylation zone under ionic liquid alkylation conditions, cooling at least one of a reactor effluent and a hydrocarbon phase of the reactor effluent, and recycling the cooled reactor effluent or cooled hydrocarbon phase to the ionic liquid alkylation zone. Ionic liquid alkylation systems for performing ionic liquid catalyzed alkylation processes are also disclosed.
Abstract:
Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.