Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
Abstract:
A method for reading a nonvolatile memory array including an array of memory cells, each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region, includes receiving, at an address register, a read command including an address for a memory cell in the array of memory cells and an indication regarding whether the read command is a full page read command or a partial page read command. A starting address for a page including the received address is identified, wherein the page includes multiple rows of memory cells in the array of memory cells. The address register is reset to the starting address for the page. It is determined whether all memory cells in the page are non-programmed. Data indicative of a non-programmed state of the page is output if it is determined that all memory cells in the page are non-programmed.
Abstract:
The invention is directed to a single power supply pin non-volatile memory device that increases programming speed by providing for two-cycle programming. The invention maintains measures to prevent accidental user overwrites and maintains JEDEC standard compatibility. To provide for two-cycle programming, a three-cycle unlock bypass command is first sent, in one embodiment, after which a plurality of consecutive two-cycle program commands can be sent.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
Abstract:
A method is provided for programming a nonvolatile memory device including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window that identifies a plurality of memory cells in the array. A first group of memory cells to be programmed is identified from the plurality of memory cells in the programming window. The first group of memory cells is programmed and a programming state of the first group of memory cells is verified.
Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element having at least two charge storage areas for storing at least two independent charges, a source region and a drain region. The method includes designating at least one memory cell as a high-speed memory cell and pre-conditioning the high-speed memory cells by placing a first of the at least two charge storage areas into a programmed state, and subsequently enabling the programming on the second area with much higher rate.
Abstract:
A bank selector circuit for a simultaneous operation flash memory device with a flexible bank partition architecture comprises a memory boundary option, a bank selector encoder coupled to receive a memory partition indicator signal from the memory boundary option, and a bank selector decoder coupled to receive a bank selector code from the bank selector encoder. The decoder, upon receiving a memory address, outputs a bank selector output signal to point the memory address to either a lower memory bank or an upper memory bank in the simultaneous operation flash memory device, in dependence upon the selected memory partition boundary.
Abstract:
An acceleration circuit for fast programming and fast chip erase of a non-volatile memory array (46) comprises an acceleration input (2) coupled to a triggering circuit (4) which is capable of generating fast program and fast chip erase commands. In an embodiment, the triggering circuit (4) comprises a high voltage detector (6), which is coupled to the acceleration input (2), and a logic circuit (8), which is coupled to the high voltage detector (6) and has a plurality of command write inputs (10). In a further embodiment, the acceleration voltage is reduced by a regulator (52) to generate a regulated voltage, which is supplied to the memory cells (72a, 72b, 74a, 74b, . . . ) in fast program and fast chip erase modes.