Abstract:
A semiconductor device comprises a two-stage differential amplifier, the amplifier comprising a first differential transistor pair whose transistors are coupled by their source electrodes and each receive an input signal, and a second differential transistor pair whose transistors are coupled by their source electrodes, each of these transistors receive the output of one of the branches of the first differential pair, and each supply an output. In the amplifier each branch of the second differential pair is arranged in series with a branch of the first differential pair so as to form two sub-circuits each including a transistor of the first pair with its load and a transistor of the second pair with its load in a manner such that the two transistors of each sub-circuit share the same current.
Abstract:
A radiofrequency transmitting device delivers output signals having a chosen radiofrequency from input data split up into complementary phase data and amplitude data. This device includes a radiofrequency reference oscillator for outputting a reference signal having a fixed radiofrequency reference, and a digital phase modulator for synthesizing the chosen radiofrequency from the fixed radiofrequency reference and for phase modulating the reference signal with the phase data, in order to produce an output signal having the chosen radiofrequency.
Abstract:
Method of manufacturing a MEMS device integrated in a silicon substrate. In parallel to the manufacturing of the MEMS device passive components as trench capacitors with a high capacitance density can be processed. The method is especially suited for MEMS resonators with resonance frequencies in the range of 10 MHz.
Abstract:
The invention relates to a MEMS resonator having at least one mode shape comprising: a substrate (2) having a surface (12), and a resonator structure (1), wherein the resonator structure (1) is part of the substrate (2), characterized in that the resonator structure (1) is defined by a first closed trench (3) and a second closed trench (3), the first trench (3) being located inside the second trench (3) so as to form a tube structure (1) inside the substrate (2), and the resonator structure (1) being released from the substrate (2) only in directions parallel to the surface (12). The invention further relates to a method of manufacturing such a MEMS resonator.
Abstract:
The invention relates to a MEMS resonator having at least one mode shape comprising: a substrate (2) having a surface (12), and a resonator structure (1), wherein the resonator structure (1) is part of the substrate (2), characterized in that the resonator structure (1) is defined by a first closed trench (3) and a second closed trench (3), the first trench (3) being located inside the second trench (3) so as to form a tube structure (1) inside the substrate (2), and the resonator structure (1) being released from the substrate (2) only in directions parallel to the surface (12). The invention further relates to a method of manufacturing such a MEMS resonator.
Abstract:
The electronic device (100) of the invention comprises a semiconductor device (30) and a low-pass filter (20), which are present in a stacked configuration, and which together include a phase locked loop. The low-pass filter is preferably embodied by vertical trench capacitors, and preferably comprises a drift compensation part. The device (100) can be suitably provided in an open loop architecture. In a preferred embodiment, the low-pass filter comprises a large capacitor (C2) and a small capacitor (C1) connected in parallel, the large capacitor (C2) being connected in series with a resistor (R1).
Abstract:
The present invention concerns a process for arylating or vinylating or alkynating a nucleophilic compound. More particularly, the invention concerns arylating nitrogent-containing organic derivatives. The arylating or vinylating or alkynating process of the invention consists of reacting a nucleophilic compound with a compound carrying a leaving group and is characterized in that the reaction is carried out in the presence of an effective quantity of a catalyst based on a metallic element M selected from groups (VIII), (Ib) and (IIb) of the periodic table and at least one at least bidentate ligand comprising at least two chelating atoms, namely at least one oxygen atom and at least one nitrogen atom.
Abstract:
The invention relates to a receiver of signals [S] received from a wireless network, said receiver working at a so-called reference oscillation frequency controlled by a so-called reference value [Vref]. Said receiver includes demodulation means [DEMO] for demodulating the received signal [S], means [EST] of estimating a mean value [MV] of the demodulated signal [SD], means [COR] of correcting the mean value [MV] of the demodulated signal [SD] to the reference value [Vref], decision means [DEC] for determining the binary values adopted by the received signal [S]. According to the invention, the estimation means [EST] include first means [ESTA] of fast extraction of a first mean value [MVA] of the demodulated signal [SD] used in decision means [DEC] during a first time period and second means [ESTB] of slow extraction of a second mean value [MVB] of the demodulated signal [SD] used in correction means [COR] and, during a second time period, in decision means [DEC].
Abstract:
An amplifier including a first output transistor (T2a) and a second output transistor (T3a) having the same polarity and arranged in push-pull configuration, and an input transistor (T1a) whose collector is coupled to the base of the first output transistor (T2a). The amplifier also includes a third output transistor (T2b) and a fourth output transistor (T3b) which are also arranged in push-pull configuration, and a supplementary input transistor (T11b) whose emitter is coupled to the emitter of the input transistor (T1a) and whose collector is coupled to the base of the second output transistor (T3a) and to the base of the third output transistor (T2b), the base of the fourth output transistor (T3b) being coupled to the collector of the input transistor (T1a).
Abstract:
An oscillator comprising an amplifier device, a capacitive divider bridge whose terminals are connected between a control electrode of the device and a reference voltage, the intermediate junction point of this bridge being connected to a principal electrode of the device, and also comprising, in parallel between the control electrode and the reference voltage, a tuning circuit having parallel branches: a first branch with an inductance in series with a variable capacitance, and, a second branch equivalent to a variable capacitance. The tuning circuit has a third branch constituted by a capacitance in parallel with the first branch, while a series inductance whose value is smaller than that of the tuning inductance is arranged between the junction point connecting the two latter branches and the junction point connecting the control electrode of the device to the second branch and to the divider bridge.