Abstract:
The device according to the invention shares a transmission medium between communication devices by allocation of authorizations to send on the medium, to each communication device. It has: a memory (65) for storing a table (64) representing communication devices (7) sharing the medium, each assigned a priority level (435, 438, 441, 444) for access to the medium; a device (94, 460, 462, 529, 543, 544, 545, 559A) for updating the access priority levels according to an estimated requirement for transmission on the medium by the communication devices under consideration.
Abstract:
A range finder includes a device for transmitting a laser beam and a device for receiving the laser echoes backscattered by a target, comprising a frontal optical system focusing the echoes on a detection zone which comprises at least one elementary detection zone associated with an individual detector with a large bandwidth, referred to as a temporal detector, and means for transporting the detection zone to the individual detector. An elementary zone is furthermore associated with a low-noise individual detector, referred to as a spatial detector, and the receive device furthermore comprises, connected to the transporting means, a switch suitable for associating said elementary detection zone with the temporal detector and with the spatial detector, alternately or in a static manner.
Abstract:
A laser device suitable for emitting pulses with a variable period and with stabilized energy includes: a resonant cavity including an amplifying medium presenting a stabilized gain G and suitable for emitting laser pulses at a wavelength λ, and a Q-switch, and a source of continuous pumping of the amplifying medium. It furthermore includes an injector positioned outside the resonant cavity, suitable for emitting a beam of wavelength λ into the amplifying material for the duration of the pumping, and which includes means for adjusting the power of this beam in order to reduce the gain of the amplifying medium to G/k, where k is a real number greater than 1.
Abstract:
The present invention relates to a range-finder comprising a laser pulse emission device and a device for detecting the pulses reflected by a distant object.The emission device is capable of emitting pulses of N distinct wavelengths, N being an integer greater than 1, with, for each wavelength, a pulse repetition frequency less than a predetermined threshold frequency.Thus, no given wavelength emission will be faced with the problem of distance ambiguity.
Abstract:
A method of transmitting binary data by a sender to a receiver over a transmission channel includes a formatting function integrated with a function of external coding of the binary data. The method applies in particular to the case where the sender uses a turbocoder with an interleaver of the “x to xe” type, and where the receiver uses a turbodecoder with an interleaver of the “x to xe” type.
Abstract:
A digital communication converter includes: a connection unit with a communication unit from which it receives or to which it delivers data frames; and a unit for sending/receiving over a transmission medium in order to transmit, by means of the medium, data frames which are delivered to it and/or to deliver information frames which it receives by means of the medium. A transmission control unit delivers, respectively to the connection unit and the sending/receiving unit, frames which have been delivered to it respectively by the sending/receiving unit and by means of the connection unit. A memory stores an address relating to the communication unit, this address being used for operating a protocol for controlling access to the transmission medium.
Abstract:
An optical apparatus for ranging and communication in free space comprises a rangefinder comprising a device for transmitting an optical signal to a target and a device for receiving the signals backscattered by the target. A system for optical communication in free space comprises a device for transmitting an optical signal to a remote optical receiving device. The transmitting device of the rangefinder and transmitting device of the communication system is a transmitting device common to the rangefinder and communication system and transmitting pulses of peak power greater than 50 W and shape factor less than 0.01 or a modulated continuous signal of peak power less than 10 W and shape factor equal to approximately 0.5 and the apparatus comprises a supervisor controlling the common transmitting device according to two modes, the pulse mode to perform the ranging function, or the modulated continuous mode to perform the optical communication function.
Abstract:
The present invention relates to a range-finder comprising a laser pulse emission device and a device for detecting the pulses reflected by a distant object.The emission device is capable of emitting pulses of N distinct wavelengths, N being an integer greater than 1, with, for each wavelength, a pulse repetition frequency less than a predetermined threshold frequency.Thus, no given wavelength emission will be faced with the problem of distance ambiguity.
Abstract:
A range finder includes a device for transmitting a laser beam and a device for receiving the laser echoes backscattered by a target, comprising a frontal optical system focusing the echoes on a detection zone which comprises at least one elementary detection zone associated with an individual detector with a large bandwidth, referred to as a temporal detector, and means for transporting the detection zone to the individual detector. An elementary zone is furthermore associated with a low-noise individual detector, referred to as a spatial detector, and the receive device furthermore comprises, connected to the transporting means, a switch suitable for associating said elementary detection zone with the temporal detector and with the spatial detector, alternately or in a static manner.
Abstract:
In order to adjust the maximum size of the information sequences transmitted by a plurality of terminals in a network, according to a predetermined network protocol, between two subnetworks supporting different maximum sizes of information sequence: there is stored in an information base, for each of the terminals, an identifier for this terminal and the maximum size of the information sequences allowed by the network protocol for communicating with this terminal; the information base is updated from the analysis of any information sequence conveyed in one of the subnetworks; then, for each information sequence to be transmitted: the identifier of the destination terminal and the corresponding maximum size of the information sequences are read in the information base; the maximum size read is compared with the current maximum size allowed by the network protocol; and, if the maximum size read is less than the current maximum size, the current maximum size is adjusted by allocating to it the value of the maximum size read.