Abstract:
A sheathed-element glow plug unit includes an input for connecting the sheathed-element glow plug unit to a control line, via which a sheathed-element glow plug of the sheathed-element glow plug unit is able to be controlled. The sheathed-element glow plug unit has an output, via which at least one further sheathed-element glow plug unit is able to be connected to the control line.
Abstract:
A method for controlling at least one sheathed-element glow plug in an internal combustion engine, the temperature of the sheathed-element glow plug being controlled as a function of at least one operating parameter of the internal combustion engine in such a way that optimal combustion properties of the internal combustion engine prevail at all times.
Abstract:
An occupant-protection system for vehicles, including: at least one sensor, which detects the surrounding area of the vehicle and generates sensor signals therefrom; an evaluation device, which analyzes the sensor signals, detects an approaching hazardous situation in advance according to an algorithm for the early detection of a hazardous situation and generates a trigger signal in this case; a seat-adjustment device having at least one actuator for adjusting a seat, the seat-adjustment device having a first speed for a comfort adjustment of the seat and a second, higher speed for the seating adjustment of the seat in response to triggering by the trigger signal. Also provided is a method for activating an occupant-protection system for vehicles.
Abstract:
Transmitted and received radar pulses are correlated in a receiver-side mixer for the measurement of the clearance distance and the speed of objects, using radar pulses. In a control device for specifying range gates, transmitter-side radar pulses that are able to be supplied to the mixer are continuously changed increasingly and/or decreasingly with respect to their pulse delay. Using a switchover device, one may switch over to the Doppler frequency measuring operation or reset to the clearance distance measuring operation.
Abstract:
In a method for detecting a replacement of sheathed-element glow plugs in an internal combustion engine, an electrical parameter of the sheathed-element glow plug is determined during a driving cycle and is compared with a stored value of the same electrical parameter of the sheathed-element glow plug that was determined in a preceding driving cycle. In the driving cycle, the same electrical parameter is determined for all sheathed-element glow plugs installed in the internal combustion engine, and the determined pattern of the electrical parameter is compared with a pattern that was ascertained in a preceding driving cycle, a replacement of a sheathed-element glow plug being detected if the pattern of the driving cycle deviates from a pattern of the preceding driving cycle.
Abstract:
A method and a device for controlling a glow plug in a combustion engine, where a state of aging A of the glow plug is ascertained, and the control of the glow plug is influenced as a function of the state of aging A of the plug.
Abstract:
A device and a method for controlling at least one glow plug of a motor vehicle are described. The at least one glow plug is controlled as a function of the operating state of the internal combustion engine. In this case, the control is effected as a function of a variable which depends on the exhaust gas temperature and/or as a function of the fulfillment of a fuel quantity condition and/or time condition.
Abstract:
A modular camera system, including a camera which is disposed in a first housing that has a first contact element, and a signal processing and control unit which is disposed in a second housing that has a second contact element, the first housing being couplable with the second housing in a manner disposed so as to abut in planar fashion, and when disposed so as to abut in planar fashion, the first contact element being connected to the second contact element.
Abstract:
A method and an apparatus for operating a radar sensor system with a number of adjacent individual sensors (3, 4, 5, 6), extensively synchronized with one another, for determining the position of a target object (15) are proposed. In one measurement cycle, the transit time of the radar signal emitted from one individual sensor and reflected by the target object to this individual sensor (3, 4, 5, 6) (direct echo (13, 14)) and to a different individual sensor (3, 4, 5, 6) (cross echo (16)) is evaluated. From the evaluation of the direct and cross echoes (13, 14, 16), at least the position of the target object (15) is determined, and a detection quality signal (Q) is ascertained, and once a predetermined amount of the detection quality signal (Q) is reached for a target object (15), a calibration is performed.
Abstract:
An intrusion sensor which includes a first light guide arrangement and a second light guide arrangement for detecting the severity of an accident in a vehicle. An interval having a width is positioned between the two light guide arrangements. In this case, the first light guide arrangement is positioned in the direction of an intrusion side. The second light guide arrangement is positioned in the direction of the vehicle interior side.