Abstract:
A metrology apparatus is arranged to illuminate a plurality of targets with an off-axis illumination mode. Images of the targets are obtained using only one first order diffracted beam. Where the target is a composite grating, overlay measurements can be obtained from the intensities of the images of the different gratings. Overlay measurements can be corrected for errors caused by variations in the position of the gratings in an image field.
Abstract:
To inspect all portions of the substrate the substrate table can be moved rotationally and linearly. Furthermore the detector can be moved rotationally. This enables all portions of a surface of the substrate to be inspected from all angles in a plane parallel to the substrate. Less linear motion is needed, so the apparatus occupies a smaller volume and generates smaller vibrations.
Abstract:
A metrology tool is arranged to measure a parameter of a substrate that has been provided with a pattern in a lithographic apparatus. The metrology tool includes a base frame, a substrate table constructed and arranged to hold the substrate, at least one sensor constructed and arranged to measure a parameter of the substrate, a displacement system to displace one of the substrate table and sensor with respect to the other one of the substrate table and sensor in at least a first direction, a first balance mass, and a first bearing which movably supports the first balance mass so as to be substantially free to translate in the opposite direction of the first direction in order to counteract a displacement of the one of the substrate table and sensor in the first direction.
Abstract:
A lithography system in which a performance criterion of the lithography system is predicted, based on one or more operating conditions of the lithography system, and compared to measurements of that performance criterion. The lithography system may determine from a difference between the measured and predicted performance criterion which, if any, sub-system of the lithography system is not performing as expected.
Abstract:
A lithography system in which a performance criterion of the lithography system is predicted, based on one or more operating conditions of the lithography system, and compared to measurements of that performance criterion. The lithography system may determine from a difference between the measured and predicted performance criterion which, if any, sub-system of the lithography system is not performing as expected.
Abstract:
A lithography system in which a performance criterion of the lithography system is predicted, based on one or more operating conditions of the lithography system, and compared to measurements of that performance criterion. The lithography system may determine from a difference between the measured and predicted performance criterion which, if any, sub-system of the lithography system is not performing as expected.
Abstract:
To inspect all portions of the substrate the substrate table can be moved rotationally and linearly. Furthermore the detector can be moved rotationally. This enables all portions of a surface of the substrate to be inspected from all angles in a plane parallel to the substrate. Less linear motion is needed, so the apparatus occupies a smaller volume and generates smaller vibrations.
Abstract:
A method, apparatus and computer product for processing of substrates in at least a part of a substrate processing system is provided. In an embodiment, the method includes obtaining, using a processing unit, at least one of a rate of processing and a time of processing of a plurality of substrate lots to be introduced into a part of the substrate processing system and determining, using the processing unit, an order of introduction of the plurality of substrate lots into the part of the substrate processing system to at least one of increase the rate of processing and decrease the time of processing of the plurality of substrate lots.