摘要:
A system and method for the ozone treatment of wastewater is disclosed. The disclosed wastewater treatment system includes a high selectivity reactor coupled to an activated sludge treatment basin. The high selectivity reactor is adapted to receive a stream containing sludge diverted directly or indirectly from the activated sludge treatment basin. The disclosed wastewater treatment system and method is adapted to inject a chemical agent, such as ozone-enriched gas, into the diverted stream for treatment within the high selectivity reactor for purposes of sludge reduction, foam control, or bulking control. The treated stream is then returned to the activated sludge treatment basin.
摘要:
A system and method for cleaning semiconductor wafers wherein the use of SCI and SC2 is eliminated and replaced by the use DIO3 and dilute chemistries. In one aspect, the invention is a method comprising: (a) supporting in a process chamber at least one semiconductor wafer having a silicon foundation with a silicon-dioxide layer in at least one pre-gate structure; (b) applying an aqueous solution of hydrofluoric acid in deionized (DI) water to the semiconductor wafer to remove the silicon dioxide layer and form a gate; (c) applying ozonated deionized water (DIO3) to the semiconductor wafer to remove particles from the gate and passivate the silicon foundation; (d) applying a dilute solution of hydrofluoric acid and hydrochloric acid in DI water to the semiconductor wafer to remove any silicon dioxide layer that may have formed in the gate from the application of the DIO3 and to remove any metal contaminants; and (e) applying DIO3 to the semiconductor wafer to grow a new layer of silicon dioxide on the silicon foundation in the gate.
摘要:
A method of removing photoresist from semiconductor wafers through the use of a sparger plate. According to the inventive method, at least one semiconductor wafer is positioned in a process tank above the sparger plate. A mixture of ozone and deionized water is introduced into the process tank at a position below the sparger plate. The mixture of ozone and deionized water is then introduced across the wafer via the sparger plate at an increased flow velocity while the wafer is submerged in the mixture of deionized water and ozone.
摘要:
A method and system for cleaning and/or stripping photoresist from photomasks used in integrated circuit manufacturing comprising a process and means of introducing a mixture of sulfuric acid and ozone (or a mixture of sulfuric acid and hydrogen peroxide) to the surface of a photomask while applying megasonic energy. The invention also comprises method and system comprising a process and means of introducing ozonated deionized water and/or a low temperature dilute aqueous solution (dAPM) to the surface of photomasks while applying megasonic energy. The process and apparatus also remove post plasma ashed residues and other contaminants from photomask surfaces.
摘要:
A process tank for processing a plurality of wafers having a diameter, the process tank comprising: two substantially vertical side walls being a first distance apart; wherein the first distance is substantially equal to the diameter of the wafer; two upwardly angled walls positioned between the side walls; a first transducer array coupled to a first of the upwardly angled walls, the first transducer array extending a length less than the diameter of the wafer; and a second transducer array coupled to a second of the upwardly angled walls, the second transducer array extending a length less than the diameter of the wafer. It is preferred that the process tank further comprise a fluid inlet positioned between the upwardly angled walls. In another aspect, the invention is a method of processing wafers comprising: filling the process tank described above with a wafer processing liquid through the tank inlet; submerging a wafer carrier holding a plurality wafers into the tank; and applying megasonic energy to the liquid through the first and second transducer arrays for a predetermined time and in a predetermined pattern.
摘要:
A process for removing photoresist from semiconductor wafers is disclosed wherein at least one semiconductor wafer having at least one layer of photoresist is positioned in a process tank; ozone gas is provided to said process tank; and said semiconductor wafer is spayed with a mixture of ozone and deionized water via at least one nozzle. The temperature during the process is maintained at or above ambient temperature. The ozone gas supplied to the tank is preferably under pressure within said process tank and the nozzles preferably spray the mixture of deionized water and ozone at a nozzle pressure between 5 and 10 atmospheres. In another embodiment, the invention is an apparatus for carrying out the process.
摘要:
A system and method for ensuring constant concentration ratios in multi-fluid mixtures used in wafer processing steps. In one aspect the invention is a method for supplying a multi-fluid mixture to a process tank comprising: transporting a first fluid through a first supply line having means to control mass flow rate of the first fluid; transporting a second fluid through a second supply line having means to control mass flow rate of the second fluid; converging the first and second fluids to form a multi-fluid mixture; repetitively measuring the concentration levels of the first and second fluids in the multi-fluid mixture with a sensor; and upon the sensor detecting undesirable concentration levels of either the first or second fluid in the multi-fluid mixture, automatically adjusting the mass flow rate of at least one of the first and second fluids to achieve desired concentration levels.
摘要:
A process/method for cleaning wafers that eliminates and/or reduces pitting caused by standard clean 1 by performing a pre-etch and then passivating the wafer surface prior to the application of the standard clean 1. The process/method may be especially useful for advanced front end of line post-CPM cleaning. In one embodiment, the invention is a method of processing a substrate comprising: a) providing at least one substrate; b) etching a surface of the substrate by applying an etching solution; c) passivating the etched surface of the substrate by applying ozone; and d) cleaning the passivated surface of the substrate by applying an aqueous solution comprising ammonium hydroxide and hydrogen peroxide.
摘要:
A system and method for the ozone treatment of wastewater is disclosed. The disclosed wastewater treatment system includes a high selectivity reactor coupled to an activated sludge treatment basin. The high selectivity reactor is adapted to receive a stream containing sludge diverted directly or indirectly from the activated sludge treatment basin. The disclosed wastewater treatment system and method is adapted to inject a chemical agent, such as ozone-enriched gas, into the diverted stream for treatment within the high selectivity reactor for purposes of sludge reduction, foam control, or bulking control. The treated stream is then returned to the activated sludge treatment basin.
摘要:
A system and method for the treatment of wastewater is disclosed. The disclosed wastewater treatment system includes a high selectivity reactor coupled to a wastewater treatment reactor, such as an activated sludge treatment basin, membrane bioreactor or sequencing batch reactor. The high selectivity reactor is adapted to receive a liquid stream containing biosolids diverted directly or indirectly from the wastewater treatment reactor. The wastewater treatment system also includes a chemical injection subsystem operatively coupled to the high selectivity reactor and adapted to inject a chemical, such as ozone-enriched gas, into the diverted liquid stream to effect highly selective treatment of the diverted stream. The treated liquid stream is subsequently sent via a return line to the continuously stirred tank reactor or other discharge point.