Abstract:
An elastomeric polymer, comprising (1) a hard segment in the amount of 10% to 60% by weight of the elastomeric polymer, wherein the hard segment includes a urethane, urea or urethaneurea; and (2) a soft segment in the amount of 40% to 90% by weight of the elastomeric polymer. The soft segment comprises (a) at least 2% by weight of the soft segment of at least one polyether macrodiol, and/or at least one polycarbonate macrodiol; and (b) at least 2% by weight of the soft segment of at least one polyisobutylene macrodiol and/or diamine.
Abstract:
The present invention provides copolymers which include a plurality of constitutional units that correspond to at least one cationically polymerizable isomonoolefin species and a plurality of constitutional units that correspond to at least one anionically polymerizable monomer species selected from the group consisting of monomers of formula (I): wherein R1, R2, R3, R4, n, p, M, X, and L are defined herein. The present invention also provides methods for making and using (e.g., in articles of manufacture such as medical devices) the copolymers of the present invention.
Abstract:
According to an aspect of the present invention, a method is provided in which a double diphenylethylene compound is reacted with a polymer that contains a carbocationically terminated chain thereby providing a 1,1-diphenylene end-functionalized chain. Subsequently, an alkylating agent is reacted with the 1,1-diphenylene end-functionalized chain, thereby providing an alkylated 1,1-diphenylene end-functionalized chain. In some embodiments, the method further comprises (a) optionally combining a 1,1-diphenylorganolithium compound with the alkylated 1,1-diphenylene end-functionalized polymer followed by (b) reacting an organolithium compound with the alkylated 1,1-diphenylene end-functionalized polymer. This provides an anionically terminated polymer, which can be used, for example, in subsequent anionic polymerization and coupling reactions. According to another aspect of the present invention, a novel polymer is provided that comprises a polymer chain, which chain further comprises the following: (a) a plurality of constitutional units that correspond to cationically polymerizable monomer species and (b) an end-cap comprising a group or a group, where R is a branched or unbranched alkyl group containing from 1 to 20 carbons and R1 is a branched, unbranched, or cyclic alkyl group or an aryl group, containing from 1 to 20 carbons. Other aspects of the present invention relate to novel copolymers that comprise: (a) a first polymer block that comprises a plurality of constitutional units that correspond to isobutylene; and (b) a second polymer block that comprises a plurality of constitutional units that correspond to hydroxyethyl methacrylate.
Abstract:
The present invention provides copolymers which include a plurality of constitutional units that correspond to at least one cationically polymerizable isomonoolefin species and a plurality of constitutional units that correspond to at least one anionically polymerizable monomer species selected from the group consisting of monomers of formula (I): wherein R1, R2, R3, R4, n, p, M, X, and L are defined herein.The present invention also provides methods for making and using (e.g., in articles of manufacture such as medical devices) the copolymers of the present invention.
Abstract:
Methods are described herein for converting carbocationically terminated polymers to anionically terminated polymers. These methods comprise: (a) providing a carbocationically terminated polymeric moiety; (b) reacting the carbocationically terminated polymeric moiety with a heterocyclic compound of the formula where —X— is selected from —S—, —O—, —NH— and —NR—, and where R is an alkyl group or an aryl group, thereby providing an end-capped polymeric moiety; and (c) reacting the end-capped polymeric moiety with an organolithium compound to yield an anionically terminated polymeric moiety. Also described are block copolymers in which a first polymer block comprising cationically polymerized monomers is linked to a second polymer block comprising anionically polymerized monomers by a group, as well as a polymer in which a polymer block comprising cationically polymerized monomers is linked to a halogenated silane residue or a carbosilane residue by a group.
Abstract:
According to an aspect of the present invention, a method is provided in which a double diphenylethylene compound is reacted with a polymer that contains a carbocationically terminated chain thereby providing a 1,1-diphenylene end-functionalized chain. Subsequently, an alkylating agent is reacted with the 1,1-diphenylene end-functionalized chain, thereby providing an alkylated 1,1-diphenylene end-functionalized chain. In some embodiments, the method further comprises (a) optionally combining a 1,1-diphenylorganolithium compound with the alkylated 1,1-diphenylene end-functionalized polymer followed by (b) reacting an organolithium compound with the alkylated 1,1-diphenylene end-functionalized polymer. This provides an anionically terminated polymer, which can be used, for example, in subsequent anionic polymerization and coupling reactions. According to another aspect of the present invention, a novel polymer is provided that comprises a polymer chain, which chain further comprises the following: (a) a plurality of constitutional units that correspond to cationically polymerizable monomer species and (b) an end-cap comprising a group or a group, where R is a branched or unbranched alkyl group containing from 1 to 20 carbons and R1 is a branched, unbranched, or cyclic alkyl group or an aryl group, containing from 1 to 20 carbons. Other aspects of the present invention relate to novel copolymers that comprise: (a) a first polymer block that comprises a plurality of constitutional units that correspond to isobutylene; and (b) a second polymer block that comprises a plurality of constitutional units that correspond to hydroxyethyl methacrylate.
Abstract:
The present invention relates to medical devices which contain isobutylene copolymers. The present invention also relates to biocompatible copolymer materials for therapeutic agent delivery comprising a therapeutic-agent-loaded isobutylene copolymer. According to an aspect of the present invention, a medical device is provided, which includes: (a) a substrate and (b) at least one polymeric layer, which contains a copolymer, disposed over all or a portion of the substrate. The copolymer contains one or more polymer chains, within which isobutylene and elevated Tg monomers (and, optionally, other monomers) are incorporated in a random, periodic, statistical or gradient distribution.
Abstract:
A novel initiator which may be used to prepare a silyl-functional living cationic polymer is disclosed, said initiator having the formula ##STR1## wherein R is independently selected from the group consisting of alkyl groups having 1 to 10 carbon atoms and aryl groups having 6 to 10 carbon atoms, R' is a divalent aliphatic hydrocarbon group having at least 3 carbon atoms, X is halogen, Y is selected from the group consisting of halogen, alkoxy, acyloxy and hydroxyl groups and a is 1, 2 or 3.
Abstract:
An olefin polymerization process is provided wherein an olefin chargestock is contacted with an organic compound polymerization initiator, a Lewis acid coinitiator and a pyridine compound such as 2,6-di-tert-butylpyridine to produce homopolymers, copolymers or block copolymers having a narrow molecular weight distribution.
Abstract:
This invention provides a novel catalyst composed of a complex of an organic acid or its ester and a Lewis acid, preferably boron trichloride that can add olefin monomers to increase the molecular weight of the complex from as low as 200 to in excess of a million, with the complex being active viz., living, until the complex dies, viz., is decomposed or destroyed so that polymers in the liquid or easily liquefiable range of 300 to about 20,000 can be made or those more difficult to be liquefied or unliquefiable, viz., those of over 10,000 up to 100,000 or in some cases 500,000 and then those in the range of the elastomers, or moldable or extrudable plastics range having very high molecular weights, generally in excess of 100,000 up to in excess of 500,000 and having useful end groups such as the halogens and specifically chloride, allyl, acryl or methacryl, acetate or formate to name some of the more useful ones.