Abstract:
A portable display device includes a display formed with electronic paper, an illuminating unit, and a controller. The electronic paper displays data in response to applied electrical current, and maintains displaying of the data in an absence of the applied electrical current. The illuminating unit selectively illuminates each particular region of a plurality of regions of the display and includes a plurality of light sources which are individually associated with one or more of the plurality of regions of the display. The controller activates the illuminating unit, selectively activating a first group of the plurality of light sources to illuminate a particular region of the display responsive to user contact, and the first group includes at least one of the plurality of light sources.
Abstract:
Disclosed herein is a light-responsive photocatalyst composition, which is a composite oxide semiconductor containing tungsten, and which can efficiently absorb visible light emitted from the sun and light emitted from interior lamps, such as fluorescent lamps, etc., and a method of preparing the light-responsive photocatalyst composition. The visible light-responsive photocatalyst composition can decompose volatile organic compounds or harmful organic matter causing sick house syndrome, even indoors, because it can be activated by visible light outdoors and can respond to light emitted from interior lamps, such as fluorescent lamps, etc.
Abstract:
A liquid crystal display includes an insulating substrate, gate and data lines formed on the substrate to define pixel areas, or collectively a display area. Gate signal interconnection wires are formed at a corner portion of the substrate outside the display area to transmit gate electrical signals, and provided with gate signal interconnection lines and first and second gate signal interconnection pads connected to both ends of the gate signal interconnection lines. A gate insulating layer, and a protective layer are further formed on the substrate, and provided with first and second contact holes exposing the first and second gate signal interconnection pads. Gate and data signal transmission films are attached to the substrate, and provided with first and second gate signal leads and first and second gate signal wires. The first and second gate signal leads are connected to the first and second gate signal interconnection pads through the first and second contact holes. The first or the second gate signal lead completely covers the first or the second contact hole at least in the longitudinal direction of the lead.
Abstract:
The present invention relates to a method for controlling the growth, size, and distribution of a lipid domain in a lipid layer using a substrate on which a topographic structure is formed, and a method of preparing a membrane device including a lipid layer having a lipid domain, where the growth, size, and distribution of the lipid domain can be controlled by said method, and a membrane device prepared thereby.
Abstract:
A liquid crystal display includes an insulating substrate, gate and data lines formed on the substrate to define pixel areas, or collectively a display area. Gate signal interconnection wires are formed at a corner portion of the substrate outside the display area to transmit gate electrical signals, and provided with gate signal interconnection lines and first and second gate signal interconnection pads connected to both ends of the gate signal interconnection lines. A gate insulating layer, and a protective layer are further formed on the substrate, and provided with first and second contact holes exposing the first and second gate signal interconnection pads. Gate and data signal transmission films are attached to the substrate, and provided with first and second gate signal leads and first and second gate signal wires. The first and second gate signal leads are connected to the first and second gate signal interconnection pads through the first and second contact holes. The first or the second gate signal lead completely covers the first or the second contact hole at least in the longitudinal direction of the lead.
Abstract:
A micromachined cell lysis device with electrodes that are spaced by less than 10 μm from one another. The cells are attracted to the space between the electrodes and then lysed.
Abstract:
The present invention relates to novel 5-pyrimidinecarboxamide derivatives and the pharmaceutical compositions containing said derivatives, and more specifically, to 5-pyrimidinecarboxamide derivatives and their pharmacutically able salts, the process for preparing them, and the pharmaceutical compositions containing said compounds as active ingredients. In particular, said 5-pyrimidinecarboxamide derivatives of the present invention, due to their inhibitory activity against the proliferation of human immunodeficiency virus (HIV) as well as hepatitis B virus (HBV), can be used as a therapeutic agent as well as a preventive agent for hepatitis B and acquired immune deficiency syndrome (AIDS).
Abstract:
The present invention relates to novel 3-nitropyridine derivatives, pharmaceutically acceptable salts thereof and pharmaceutical compositions containing the same as active ingredients. Methods of preparing the derivatives and pharmaceutical compositions containing the same are also disclosed. The 3-nitropyridine derivatives of the present invention, due to their inhibitory activity against the proliferation of human immunodeficiency virus (HIV) as well as hepatitis B virus (HBV), can be used as therapeutic agents as well as preventive agents for hepatitis B and acquired immune deficiency syndrome (AIDS).
Abstract:
A bubble-jet type ink-jet printhead, and a manufacturing method thereof are provided, wherein, the printhead includes a substrate integrally having an ink supply manifold, an ink chamber, and an ink channel, a nozzle plate having a nozzle, a heater consisting of resistive heating elements, and an electrode for applying current to the heater. In particular, the ink chamber is formed in a substantially hemispherical shape on a surface of the substrate, a manifold is formed from its bottom side toward the ink chamber, and the ink channel linking the manifold and the ink chamber is formed at the bottom of the ink chamber. Thus, this simplifies the manufacturing process and facilitates high integration and high volume production. Furthermore, a doughnut-shaped bubble is formed to eject ink in the printhead, thereby preventing a back flow of ink as well as formation of satellite droplets that may degrade image resolution.