Abstract:
A thin film transistor (TFT) and a method of manufacturing the same are provided, the TFT including a gate insulating layer on a gate. A channel may be formed on a portion of the gate insulating layer corresponding to the gate. A metal material may be formed on a surface of the channel. The metal material crystallizes the channel. A source and a drain may contact side surfaces of the channel.
Abstract:
An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light. Thus, various systems such as the optical scanner, the optical modulator, the 2D/3D conversion stereoscopic image display apparatus, and the holographic display apparatus may not require a separate optical system to increase an operational angle range, thereby decreasing a size of the system and/or improving a resolution of the system.
Abstract:
A foldable display device includes a first display panel which displays a portion of an image; a second display panel which displays a second portion different from the first portion of the image; a first protecting window on the first display panel; a second protecting window on the second display panel; and a flexible material layer between the first and second protecting windows. Side surfaces of the first and second protecting windows which contact the flexible material layer, respectively, are inclined with respect to a surface of each of the first and second protecting windows.
Abstract:
An organic semiconductor device includes an organic semiconductor, an electrode electrically connected to the organic semiconductor, and a self-assembled monolayer positioned between the organic semiconductor and the electrode, the self-assembled monolayer including a monomer having an anchor group at one end and an ionic functional group at another end.
Abstract:
Transistors, methods of manufacturing the same, and electronic devices including the transistors. The transistor may include a light blocking member which surrounds at least a portion of the channel layer. The light blocking member may be designed to block light laterally incident from a side of the transistor toward the channel layer (that is, laterally incident light). The light blocking member may be disposed in a portion of a gate insulation layer outside the channel layer. The light blocking member may be connected to a source and a drain or may be connected to a gate. The light blocking member may be separated from the source, the drain and the gate. The light blocking member may completely surround the channel layer.
Abstract:
A foldable display includes a first plate, a second plate, a first protecting window, a second protecting window, a soft material layer and an intermediate layer which controls brightness. The first plate includes a thin film transistor and an organic light emitting diode (“OLED”), and displays at least one portion of an image to be displayed. The second plate includes a thin film transistor and an OLED, and displays a second portion different from the first portion of the image. The first protecting window is on the first plate. The second protecting window is on the second plate. The soft material layer is between the first and second protecting windows. The intermediate layer is between the soft material layer and a side surface of the first protecting window, and between the soft material layer and the second protecting window.
Abstract:
An image measuring apparatus for enhancing an accuracy of an image captured by an optical system and a method thereof are disclosed. The apparatus includes a CCD camera for capturing the object and outputting the captured image, a lamp for generating white light to illuminate a capturing area of the object, an illumination controller for controlling the lamp to be turned on, a piezoelectric actuator for controlling a minute height of the optical system with respect to the object, an image capturing device for acquiring the image captured by the CCD camera, a driving signal generator for outputting a driving signal to the illumination controller and the piezoelectric actuator when an enable signal is generated from the CCD camera, and an image signal processor for estimating height information of the object from data transmitted from the image capturing unit.
Abstract:
A thin film transistor (“TFT”) includes a poly silicon layer formed on a flexible substrate and including a source region, a drain region, and a channel region, and a gate stack formed on the channel region of the poly silicon layer, wherein the gate stack includes first and second gate stacks, and a region of the poly silicon layer between the first and second gate stacks is an off-set region. A method of manufacturing the TFT is also provided.
Abstract:
A display device including an oxide semiconductor thin film transistor is provided. The display device includes at least one thin film transistor, and at least one storage capacitor. The storage capacitor includes a storage electrode formed of a transparent oxide semiconductor, and a pixel electrode over the storage electrode. The pixel electrode may be separated from the storage electrode by a desired distance.
Abstract:
Example embodiments of the present invention relate to an organic insulator composition, an organic insulating film having the organic insulator composition, an organic thin film transistor having the organic insulating film, an electronic device having the organic thin film transistor and methods of forming the same. Other example embodiments of the present invention relate to an organic insulator composition including a fluorinated silane compound that may be used to improve the charge carrier mobility and hysteresis of an organic thin film transistor. An organic insulator composition including a fluorinated silane compound and an organic thin film transistor using the same is provided. The hysteresis and physical properties, e.g., threshold voltage and/or charge carrier mobility, of the organic thin film transistor may be improved by the use of the organic insulator composition. The organic thin film transistor may be effectively used in the manufacture of a variety of electronic devices including liquid crystal displays (LCDs) and/or photovoltaic devices.