Abstract:
The present invention relates to a nitride micro light emitting diode (LED) with high brightness and a method of manufacturing the same. The present invention provides a nitride micro LED with high brightness and a method of manufacturing the same, wherein a plurality of micro-sized luminous pillars 10 are formed in a substrates, a gap filling material such as SiO2, Si3N4, DBR(ZrO2/SiO2 HfO2/SiO2), polyamide or the like is filled in gaps between the micro-sized luminous pillars, a top surface 11 of the luminous pillar array and the gap filling material is planarized through a CMP processing, and then a transparent electrode 6 having a large area is formed thereon, so that all the luminous pillars can be driven at the same time. In addition, the present invention provides a nitride micro LED with high brightness in which uniformity in formation of electrodes on the micro-sized luminous pillars array is enhanced by employing a flip-chip structure.
Abstract:
An intake system of an engine may include an intake line that is configured to supply cylinder of an engine with air, an exhaust line that exhaust gas combusted in the cylinder is exhausted, a housing disposed on the intake line and a compressor is disposed therein, the compressor is operated by a turbine disposed on an exhaust line, a recirculation line that recirculates the air from the intake line of a downstream side of the compressor to the intake line of an upstream side of the compressor, and an anti surge valve disposed on the recirculation line to open/close the recirculation line, wherein a length of a first section (l) that is straight from the anti surge valve is longer than two times the outlet diameter (d) of the anti surge valve in the recirculation line that is formed from the anti surge valve to an upstream side of the compressor.A distance (L) from the intake line that is connected to the recirculation line to the inlet of the housing may be longer than times the inlet diameter (D) of the housing that the compressor is disposed therein.Accordingly, while the intake air circulates the anti surge valve during a tip-out or acceleration period, the turbulent flow may be decreased and the flowing becomes smooth such that the noise is decreased and the emotional quality may be improved in the intake system of the engine.
Abstract:
Provided is a synchronous dynamic random access memory (DRAM) semiconductor device including multiple output buffers, a strobe control unit and multiple strobe buffers. Each of the output buffers is configured to output one bit of data. The strobe control unit is configured to output multiple strobe control signals in response to an externally input signal. The strobe buffers are connected to the output buffers and the strobe control unit, and each of the strobe buffers is configured to output at least one strobe signal. At least some of the strobe buffers are activated in response to the strobe control signals, and the output buffers are activated in response to the strobe signals output by the activated strobe buffers.
Abstract:
The present invention relates to a nitride micro light emitting diode (LED) with high brightness and a method of manufacturing the same. The present invention provides a nitride micro LED with high brightness and a method of manufacturing the same, wherein a plurality of micro-sized luminous pillars 10 are formed in a substrates, a gap filling material such as SiO2, Si3N4, DBR(ZrO2/SiO2HfO2/SiO2), polyamide or the like is filled in gaps between the micro-sized luminous pillars, a top surface 11 of the luminous pillar array and the gap filling material is planarized through a CMP processing, and then a transparent electrode 6 having a large area is formed thereon, so that all the luminous pillars can be driven at the same time. In addition, the present invention provides a nitride micro LED with high brightness in which uniformity in formation of electrodes on the micro-sized luminous pillars array is enhanced by employing a flip-chip structure.
Abstract:
A method and apparatus for homoepitaxial growth of freestanding, single bulk crystal Gallium Nitride (GaN) are provided, wherein a step of nucleating GaN in a reactor results in a GaN nucleation layer having a thickness of a few monolayers. The nucleation layer is stabilized, and a single bulk crystal GaN is grown from gas phase reactants on the GaN nucleation layer. The reactor is formed from ultra low oxygen stainless steel.