Abstract:
Processor-based systems, memories, signal driver circuits, and methods of generating an output signal are disclosed. One such signal driver circuit includes a signal driver configured to generate an output signal at an output node in response to an input signal and a transistor coupled to the signal driver that is configured to couple and decouple the output node and the voltage supply according to a control signal. A voltage comparator circuit coupled to the output node and the transistor is configured to generate the control signal to control coupling and decoupling of the output node and the voltage supply through the transistor based on a voltage of the output signal relative to the reference voltage.
Abstract:
Circuits, methods and systems are disclosed providing clock synchronization circuits for synchronized clock distribution for a plurality of devices in a semiconductor device. The clock synchronization apparatus includes an independent synchronization circuit and a dependent synchronization circuit. The independent synchronization circuit may provide synchronized clock distribution for a first destination while the dependent synchronization circuit may provide synchronized clock distribution to a second destination. A method for synchronized clock distribution to a plurality of destinations is also described.
Abstract:
A signal driver circuit having an adjustable output voltage for a high-logic level output signal. The signal driver circuit includes a signal driver configured to output a first logic level signal having a first voltage and output a second logic level signal having a second voltage according to an input signal. A voltage controlled voltage supply coupled to the signal driver provides the first voltage for the first logic level signal. The magnitude of the first voltage provided by the voltage controlled voltage supply is based on a bias voltage. A bias voltage generator can be coupled to the voltage controlled voltage supply to provide the bias voltage.
Abstract:
Methods and apparatus are disclosed, such as those involving a digital phase detector that includes a phase detection circuit configured to detect which one of two clock signals leads the other. One such phase detector includes a balancer configured to prepare the phase detection circuit for a phase detection. The phase detection circuit of one or more embodiments includes a cross-coupled latch configured to receive the two clock signals and generate a first latch output and a second latch output in response to the two clock signals. The aforementioned balancer is configured to substantially equalize the voltage levels of the first and second latch outputs before the phase detection circuit detects a phase difference between the two clock signals. For example, the balancer might pre-charge the outputs of the phase detection circuit to substantially the same voltage level before phase detection.
Abstract:
Clock capturing synchronization circuitry first generates a synchronized clock signal from a reference clock signal, then captures the synchronized clock signal, and continues to output a synchronized clock signal after the reference clock signal is removed. The clock capturing synchronization circuitry also reduces input referred jitter in the synchronized clock signal.
Abstract:
Digital delay-locked loops (DLLs) and methods are provided for signal frequency multiplication. Analog delay elements of typical frequency-multiplying DLLs are replaced with digital and digitally-controlled elements including a variable delay line. The number of unit delay elements in the delay line can be selected to produce a desired output signal delay. Phase-mixing of multiple variable delay line outputs achieves finer delay-time adjustments.
Abstract:
A method and circuitry for a Delay Locked Loop (DLL) or a phase Locked Loop (PLL) is disclosed, which improves the loop stability at high frequencies and allows maximum tracking bandwidth, regardless of process, voltage, or temperature variations. Central to the technique is to effectively operate the loop at a lower frequency close to its own intrinsic bandwidth (1/tLoop) instead of at the higher frequency of the clock signal (1/tCK). To do so, in one embodiment, the loop delay, tLoop, is measured or estimated prior to operation of the loop. The phase detector is then enabled to operate close to the loop frequency, 1/tLoop. In short, the phase detector is made not to see activity during useless delay times, which prevents the loop from overreacting and becoming unstable.
Abstract:
A clock generating circuit includes a phase comparison circuit that generates a delay control signal corresponding to the relative phases of an output clock signal and a reference clock signal. A voltage controlled delay circuit generates the delayed clock signal by inverting a signal applied to its input and delaying the signal by a delay that is determined by a delay control signal. A selection circuit couples either the reference clock signal or the delayed clock signal to the input of the voltage controlled delay circuit. When the reference clock signal is coupled to the input of the voltage controlled delay circuit, the clock generating circuit functions as a delay-lock loop. When the delayed clock signal is coupled to the input of the voltage controlled delay circuit, the voltage controlled delay circuit operates as a ring oscillator so that the clock generating circuit functions as a phase-lock loop.
Abstract:
A memory system couples command, address or write data signals from a memory controller to a memory device and read data signals from the memory device to the memory controller. A respective strobe generator circuit in each of the memory controller and the memory device each generates an in-phase strobe signal and a quadrature strobe signal. Command, address or write data signals stored in respective output latches in the memory controller are clocked by the in-phase signals from the internal strobe generator circuit. These command, address or write data signals are latched into input latches in the memory device by the quadrature strobe signal coupled from the memory controller to the memory device. In substantially the same manner, read data signals are coupled from the memory device to the memory controller using the in-phase and quadrature strobe signals generated by the internal strobe generator circuit.
Abstract:
PLL circuits are provided in which a voltage-controlled oscillator (VCO) comprising one or more voltage-controlled delay units (VCDs) is initialized with the control voltage of a voltage-controlled delay line (VCDL) having substantially identical VCDs. In general, VCDLs provide for faster signal locking than do VCOs. The VCO locks to a frequency of a reference signal at substantially the same time that the VCDL locks to the reference signal. Lock time of the PLL circuit is thereby reduced. A timing circuit prevents the VCO control voltage from being adjusted during phase locking of the VCO. This allows the VCO frequency lock to be maintained during the VCO phase locking. Lock time is thereby further reduced. The timing circuit locks the VCO to a phase of the reference signal by restarting oscillation of the VCO at an appropriate time.