Abstract:
The presently disclosed subject matter relates to an industrial system for processing various plant materials to produce marketable materials. Particularly, the system integrates subcritical water extraction technology and includes a pre-processing module and a two-stage extractor (processing module) with constant control of temperature, pressure, and/or residence time. In some embodiments, the final product of the disclosed system can include feedstock constituents for biofuel production (sugars and/or oil), biochar, raw materials for various industries (such as pulp for manufacturing paper or cellulose for use in various industries). The disclosed system can be modular or non-modular, stationary or mobile, and can include prefabricated elements with programmed automatic or manual operation so that it can be easily moved and/or assembled on site.
Abstract:
Provided herein are methods of optimizing energy recovery from oilseeds. The methods disclosed provide at least the ability to swell oilseeds and disrupt the cell walls (hulls) without changing the functionality and quality of oil; the process integration of removing the impurities from oilseeds, oil extraction, protein hydrolysis, and green coal production to maximize the energy recovery in the form of crude oil, polypeptides, oligopeptides, amino acids, and/or green coal from oilseeds; and heat integration during processing stages including subcritical water pretreatment, oil extraction, subcritical water post-treatment, and subcritical water carbonization to minimize the process heat requirement.
Abstract:
The presently disclosed subject matter is directed to a method of processing plant oil to produce high grade fuel such as biodiesel and jet fuel. Particularly, a method is provided that includes treating an oil under hydrothermal conditions in the presence of i) an acid that acts as an in situ source of hydrogen and ii) an activated carbon essentially free of a metal catalyst, wherein the treating results in production of liquid hydrocarbons for use as a fuel.
Abstract:
The presently disclosed subject matter is directed to a method of processing plant oil to produce high grade fuel such as biodiesel and jet fuel. Particularly, a method is provided that includes treating an oil under hydrothermal conditions in the presence of i) an acid that acts as an in situ source of hydrogen and ii) an activated carbon essentially free of a metal catalyst, wherein the treating results in production of liquid hydrocarbons for use as a fuel.
Abstract:
Provided herein are methods of optimizing energy recovery from oilseeds. The methods disclosed provide at least the ability to swell oilseeds and disrupt the cell walls (hulls) without changing the functionality and quality of oil; the process integration of oil extraction and green coal production to maximize the energy recovery in the form of crude oil and green coal from oilseeds; and heat integration during processing stages including subcritical water pretreatment, oil extraction, and subcritical water carbonization to minimize the process heat requirement.
Abstract:
The presently disclosed subject matter relates to an industrial system for processing various plant materials to produce marketable materials. Particularly, the system integrates subcritical water extraction technology and includes a pre-processing module and a two-stage extractor (processing module) with constant control of temperature, pressure, and/or residence time. In some embodiments, the final product of the disclosed system can include feedstock constituents for biofuel production (sugars and/or oil), biochar, raw materials for various industries (such as pulp for manufacturing paper or cellulose for use in various industries). The disclosed system can be modular or non-modular, stationary or mobile, and can include prefabricated elements with programmed automatic or manual operation so that it can be easily moved and/or assembled on site.
Abstract:
Systems and methods are provided that involve a subcritical water reaction to recycle the cellulose and polyester components of waste cotton and cotton/polyester blend textiles that would otherwise be discarded or disposed of. Specifically, the disclosed methods provide for treatment of the waste textiles to produce advanced materials including cellulose and terephthalic acid (TPA) with a low environmental impact. The cellulose and TPA that are produced are of a high quality allowing for production of regenerated cellulose and regenerated polyethylene terephthalate (PET) suitable for fiber spinning and textile applications.
Abstract:
The presently disclosed subject matter relates to an industrial system for processing various plant materials to produce marketable materials. Particularly, the system integrates subcritical water extraction technology and includes a pre-processing module and a two-stage extractor (processing module) with constant control of temperature, pressure, and/or residence time. In some embodiments, the final product of the disclosed system can include feedstock constituents for biofuel production (sugars and/or oil), biochar, raw materials for various industries (such as pulp for manufacturing paper or cellulose for use in various industries). The disclosed system can be modular or non-modular, stationary or mobile, and can include prefabricated elements with programmed automatic or manual operation so that it can be easily moved and/or assembled on site.
Abstract:
Processes for recovering sugars and nicotine from a tobacco biomass include feeding a biomass of tobacco plants and subcritical water to a reactor, hydrolyzing the biomass of tobacco plants with the subcritical water at a temperature between about 150° C. and 305° C. and recovering a liquid product and a solid product from the reactor, wherein the liquid product contains water-soluble sugars and nicotine.