Abstract:
An eye safety mechanism for use with a bi-directional data cable having an electrical interface at least one (but potentially both) ends, despite the fact that the cable communicates over much of its length using a bi-directional optical channel. Upon power-up, the eye safety mechanism determines whether or not a loss of signal condition is present on an optical receive channel of the bi-directional data cable. If the loss of signal is present, the mechanism intermittently disables the optical transmit channel of the bi-directional data cable. On the other hand, if the loss of signal is not present, the mechanism enables the optical transmit channel of the bi-directional data cable without intermittently disabling transmission at least for most of the time until the next time a loss of signal is detected on the optical receive channel.
Abstract:
An active cable that is configured to communicate over much of its length using one or more optical fibers, and that includes an integrated electrical connector at at least one end. The active cable includes a power transmission spanning the length of the optical fiber(s). Thus, electrical power from one end of the optical cable may be provided to an opposite side of the optical cable. The cable may be an electrical to optical cable, and electrical to electrical cable, or one of many other potential configurations.
Abstract:
An optical transmitter that controls the extinction ratio by modulating a power level of an optical signal using a frequency spread tone. An electro-optic transducer driver generates an electrical signal that is to be converted into an optical signal. Meanwhile, a tone generator generates an electrical tone having a relatively narrow frequency spectrum. A frequency spreading circuit frequency spreads the electrical tone. A modulator modulates a power level of the electrical signal using the frequency spread electrical tone. An electro-optic transducer then converts the modulated electrical signal into a corresponding optical signal. An optoelectronic transducer recovers the modulated electrical signal by monitoring the optical signal. The tone is then recovered from the signal, and demodulated. The demodulated tone is then used to control the extinction ratio.
Abstract:
An eye safety mechanism for use with a bi-directional data cable having an electrical interface at least one (but potentially both) ends, despite the fact that the cable communicates over much of its length using a bi-directional optical channel. Upon power-up, the eye safety mechanism determines whether or not a loss of signal condition is present on an optical receive channel of the bi-directional data cable. If the loss of signal is present, the mechanism intermittently disables the optical transmit channel of the bi-directional data cable. On the other hand, if the loss of signal is not present, the mechanism enables the optical transmit channel of the bi-directional data cable without intermittently disabling transmission at least for most of the time until the next time a loss of signal is detected on the optical receive channel.
Abstract:
An active cable that is configured to communicate over much of its length using one or more optical fibers, and that includes an integrated electrical connector at at least one end. The active cable includes an integrated retiming mechanism. Thus, multiple links of cable may be used while reducing the chance that the jitter will exceed allowable limits. The cable may be an electrical to optical cable, and electrical to electrical cable, or one of many other potential configurations.
Abstract:
This disclosure concerns systems and devices configured to implement impedance matching schemes in a high speed data transmission environment. In one example, an optoelectronic assembly is provided that includes a TO package having a base through which one or more leads pass. The leads are electrically coupled to an optoelectronic device in the TO package, and are electrically isolated from the base. Some or all of the leads include a ground ring that is electrically isolated from the lead and electrically coupled with the base. A circuit interconnect is also included that is electrically coupled to the optoelectronic device and the TO package. The circuit interconnect includes a dielectric substrate having signal traces that are electrically coupled to the signal leads. A ground signal conductor disposed on the dielectric substrate is electrically coupled with the ground rings.
Abstract:
The present invention relates generally to laser diodes, and particularly to an operational amplifier able to switch laser diodes on and off quickly without adversely affecting data transmission by the laser diodes. A differential amplifier included in an operational amplifier has a high transconductance when a laser diode is first turned on and a low, near constant transconductance when the laser diode is transmitting data. The operational amplifier is preferably incorporated in optoelectronic transceivers used in passive optical networks. Switching laser diodes on and off quickly enables more efficient use of network bandwidth in such passive optical networks.
Abstract:
A low inductance structure for improving the integrity of data signals carried in an optical subassembly is disclosed. In one embodiment the optical subassembly comprises a housing containing a lens assembly and an optical isolator. The optical subassembly further includes an optoelectronic package having a base defining a mounting surface that cooperates with a cap to define a hermetic enclosure. First and second signal leads of the subassembly include ends that extend into the hermetic enclosure. A submount is disposed on the base mounting surface. A low inductance structure is integrally formed with the submount and includes a dielectric body interposed between the first and second leads. The body includes shaped edges and conductive pad structures in electrical communication with conductive traces disposed on the submount. Each pad structure is also in electrical communication with a respective one of the first and second signal leads via a plurality of wirebonds.
Abstract:
In one example embodiment, an optoelectronic module includes an optical receiver and a post-amplifier. The optical receiver is configured to receive an optical signal and generate an electrical data signal corresponding to the optical signal. The post-amplifier is electrically connected to the optical receiver and is configured to amplify the electrical data signal. The optoelectronic module further includes means for quantifying a quality of the optical signal from which the amplified electrical data signal is derived.
Abstract:
An optoelectronic transceiver comprises an active linear TOSA circuit mounted on a header. The active linear TOSA circuit includes input nodes for receiving a differential signal pair, a first bipolar transistor, a second bipolar transistor and an electro-optical transducer. A base terminal of the first bipolar transistor is coupled to the two input nodes and an emitter terminal of the first bipolar transistor is coupled to a base terminal of the second bipolar transistor. A collector terminal of the first bipolar transistor is coupled to a first terminal of the electro-optical transducer, the first terminal of the electro-optical transducer also being configured to be coupled to a voltage source. A collector terminal of the second bipolar transistor is coupled to a second terminal of the electro-optical transducer and an emitter terminal of the second bipolar transistor is coupled to a signal ground which is not the header ground.