摘要:
A vascular or cardiovascular medical device for placement at a site in a patient's body and for controlling pH levels at the site in the patient's body includes one or more structural components made of a biodegradable and/or bioabsorbable material, or alternatively, a coating thereon made of a biodegradable and/or bioabsorbable material. A buffering agent is provided on or in the biodegradable and/or bioabsorbable material and the buffering agent is dispersed from the biodegradable and/or bioabsorbable material in response to hydrolysis of the biodegradable and/or bioabsorbable material. Additionally, the vascular or cardiovascular medical device can include a drug that is included with the biodegradable and/or bioabsorbable material. The vascular or cardiovascular medical device can also be a stent or a valve.
摘要:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics. The stent has a plurality of hoop components interconnected by at least one flexible connector. The hoop components are formed as a continuous series of alternating substantially longitudinally oriented strut members and connector junction struts, whereas the longitudinal strut is connected to the connector junction strut by alternating substantially circumferentially oriented arc members.
摘要:
A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.
摘要:
Self-expanding stent delivery systems and methods having an introducer that receives a delivery catheter. The delivery catheter includes an outer body, an inner body and a stent loaded onto a stent bed within the inner body. The outer body receives the inner body with the stent loaded on the stent bed thereof. The outer body helps constrain the stent in its undeployed state in the stent bed until the stent is deployed by retraction of the outer body of the delivery catheter when the stent is identified as positioned across an intended treatment site. At least one anchoring mechanism provided on the inner body helps maintain the undeployed loaded stent appropriately in the stent bed during deployment. The at least one anchoring mechanism can include radiopaque material to increase fluoroscopic visualization of the stent during deployment, and the self-expanding stent can be a bio-absorbable material including drugs or other bio-active agents incorporated therein or provided thereon. The at least one anchoring mechanism can instead comprise a set of at least two bumpers between which the stent is loaded until deployed by retraction of the outer body of the delivery catheter when the stent has been appropriately positioned across an intended treatment site. After deployment of the stent at the intended treatment site, removal of the inner body and outer body of the delivery catheter and of the introducer occurs. Reliable and accurate emplacement of the stent across an intended treatment site is rendered more likely as a result.
摘要:
A bioabsorbable drug delivery device and various methods of making the same. The devices are preferably formed from bioabsorbable materials using low temperature fabrication processes, whereby drugs or other bio-active agents are incorporated into or onto the device and degradation of the drugs or other agents during processing is minimized. The method includes the steps of preparing a solution of at least one bioabsorbable polymer with a solvent and pouring the solution into a mold. The solvent is then evaporated in a nitrogen environment and the solution is converted into a film. The film is then removed from the mold and residual solvent is removed from the film. The film is then cut into strips and stored in an inert environment.
摘要:
Self-expanding stent delivery systems and methods having an introducer that receives a delivery catheter. The delivery catheter includes an outer body, an inner body and a stent loaded onto a stent bed within the inner body. The outer body receives the inner body with the stent loaded on the stent bed thereof. The outer body helps constrain the stent in its undeployed state in the stent bed until the stent is deployed by retraction of the outer body of the delivery catheter when the stent is identified as positioned across an intended treatment site. At least one anchoring mechanism provided on the inner body helps maintain the undeployed loaded stent appropriately in the stent bed during deployment. The at least one anchoring mechanism can include radiopaque material to increase fluoroscopic visualization of the stent during deployment, and the self-expanding stent can be a bio-absorbable material including drugs or other bio-active agents incorporated therein or provided thereon. The at least one anchoring mechanism can instead comprise a set of at least two bumpers between which the stent is loaded until deployed by retraction of the outer body of the delivery catheter when the stent has been appropriately positioned across an intended treatment site. After deployment of the stent at the intended treatment site, removal of the inner body and outer body of the delivery catheter and of the introducer occurs. Reliable and accurate emplacement of the stent across an intended treatment site is rendered more likely as a result.
摘要:
The use of electrostatic impregnation to load materials such as binders and flavors onto substrates such as fibers and medical devices is disclosed. Substrates loaded with materials such as binders and flavors, wherein the materials are loaded on the substrates via electrostatic impregnation are also disclosed.
摘要:
A bicomponent monofilament tape wherein the tape is made from the fusion of the sheaths of at least about 60 bicomponent core-sheath fibers and the bonding of the fused sheaths to the core fibers is disclosed. A process for preparing a bicomponent monofilament tape by providing at least about 60 bicomponent core-sheath fibers; fusing the sheaths; and bonding the fused sheaths to the core fibers is also disclosed.
摘要:
A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.
摘要:
The present invention provides a porous structure that works very effectively to seal a puncture site with optimum porosity, absorbent capacity and perfect anatomical fit. The plug density and other fiber properties/geometry (total denier; number of filaments; etc) have provided an efficient structure that allows instantaneous absorption of blood during deployment. The final size of the plug with absorbed fluids provides an anatomical fit and seals the puncture site within few minutes after deployment.