Abstract:
A system for producing a layer of aligned carbon nanotubes, the system comprising: a sprayer, a solution delivery tube configured to deliver a carbon nanotube solution to the sprayer, the carbon nanotube solution including carbon nanotubes dispersed in chloroform, and a reservoir configured to contain a water subphase. The sprayer is configured to generate a continuous spray of the carbon nanotube solution. The continuous floating layer is supported by the subphase. The spray of carbon nanotube solution includes droplets of the carbon nanotube solution, the droplets having a median diameter in a range from about 1 to about 100 microns. The sprayer maintains the continuous floating layer of carbon nanotube solution on the subphase as a substrate is inserted into or removed from the subphase, the carbon nanotube solution being in contact with the substrate.
Abstract:
A transfer and coating apparatus transfers a component from a conveyor to a coating station for application of a coating. The transfer apparatus includes a mast that can move about orthogonal axes in a horizontal plane and a mast having a carriage that can move vertically. The carriage includes a hook that swings about a horizontal axis relative to the mast for movement of the component in the horizontal direction. A sway bar extends between the hook and component to inhibit movement about a horizontal axis. The component is delivered to an upper compartment of a coating apparatus where it can be lowered in to a lower compartment containing coating material. Excess coating material is removed by an array of nozzles in the upper compartment as the component is raised from the coating material.
Abstract:
A heating element for in-flight de-icing of aircraft is disclosed. The heating element includes a carbon fiber material that is designed to be arranged on a component of an aircraft. The carbon fiber material includes at least two electrical contacts for connecting to an electrical wiring system, and at least one insulation layer for electrical insulation.
Abstract:
A system for producing a layer of aligned carbon nanotubes, the system comprising: a sprayer, a solution delivery tube configured to deliver a carbon nanotube solution to the sprayer, and a reservoir configured to contain a subphase. The sprayer is configured to generate a continuous spray of the carbon nanotube solution. The continuous floating layer is supported by the subphase. The spray of carbon nanotube solution includes droplets of the carbon nanotube solution, the droplets having a median diameter in a range from about 1 to about 100 microns. The sprayer maintains the continuous floating layer of carbon nanotube solution on the subphase as a substrate is inserted into or removed from the subphase, the carbon nanotube solution being in contact with the substrate.
Abstract:
Disclosed is a microcapsule including a core having an oxidizable active (OA), the outer part of said core being in a solid form, and a water insoluble coating obtained from an encapsulating agent (EA), with the coating surrounding said core. In particular, the EA can be water soluble or organic solvent soluble, in particular in ethanol. The microcapsule can also include an EA in which the water solubility is pH-dependent. Also, the core does not contain a metal oxide, and the coating does not include a disintegrant, such as sodium starch glycolate. Also disclosed is a process for preparing the microcapsules.
Abstract:
A method and system for coating metallic powder particles is provided. The method includes: disposing an amount of metallic powder particulates within a fluidizing reactor; removing moisture adhered to the powder particles disposed within the reactor using a working gas; coating the powder particles disposed within the reactor using a precursor gas; and purging the precursor gas from the reactor using the working gas.
Abstract:
The invention relates to a process for producing a water-absorbing material by coating water-absorbing polymer particles with a film-forming polyurethane and pyrogenic silica and heat treating the coated particles. The invention further relates to the water-absorbing material obtainable according to the process of the invention. The water-absorbing material has improved wicking ability (FHA) and fixed swell rate (FSR).
Abstract:
In a lead-free hot-dip galvanizing method and its processed product, a pure zinc tablet with a 99.995% purity is used and a conventional zinc solution containing lead is changed to a novel hot-dip galvanizing zinc solution for the hot dip galvanizing process. The hot-dip galvanizing zinc solution has a composition of 98% to 99% of zinc, 0.2% to 1.0% of aluminum and less than 1% of a trace element by weight, so that this hot dip galvanizing process with a lead and cadmium free galvanizing condition is achieved.
Abstract:
The present invention relates to a coating assembly and methods that employ the coating assembly to control the thickness of therapeutic or other coatings delivered to a medical device during a coating process. In one embodiment the coating assembly may include a coating plate having a coating transfer surface and a shoulder having a first height, a mandrel moveable over the coating transfer surface, and a coating dispenser positioned in fluid communication with the coating transfer surface. The invention also includes a method of coating a medical device. This method may include placing a medical device on a mandrel, dispensing coating onto a coating transfer surface of a coating plate, moving the mandrel and the medical device over the coating transfer surface of the coating plate so that coating resident on the coating transfer surface transfers to an exposed surface of the medical device, and removing the medical device from the mandrel.
Abstract:
A method and apparatus of applying a particulate material to a substrate includes applying adhesive to the substrate and passing the substrate through a chamber in which a particulate material is suspended in a fluid in order to adhere the particulate material to the substrate.