摘要:
A lifetime of a display is optimized by determining whether to control at least a portion of a display based on a lifetime metric. A plurality of display control options is identified in response to determining to control the portion of the display, and one of the display control options is selected.
摘要:
A fixture (10) for bonding multiple components together includes a bottom plate (20), a middle plate (22) and a top plate (24). The plates (20), (22) and (24) are aligned by dowels (26) and clamps (30). Bottom plate (20) has a rectangular pocket (32) for holding heat sink (14) and alignment pins (34) for locating plastic pin grid array (PPGA) package (12) over the heat sink (14). An annular projection (40) covered with a conformal pad (42) extends from bottom surface (44) of the middle plate (22). Dowel (50) extends through openings (46) and (36) in the top and middle plates (24) and (22) to apply pressure to chip (16). A first spring (56) is mounted on the dowel (50) and compressed between the top plate (24) and a snap ring (58) to provide pressure from the dowel (50) on the chip (16). A second, larger diameter spring (60) is compressed between the middle plate (22) and the top plate (24) to provide pressure from the middle plate (22) on the PPGA (12). Cartridge heaters (62) are embedded in the bottom plate (20) to provide heat for epoxy or solder bonding. A thermocouple (64) monitors temperature at the bottom plate (20).
摘要:
A light source can include an LED configured to emit light having a spectrum of first wavelengths when provided with electrical current, a pumped material configured to absorb at least some of the light emitted by the LED and to emit light having a spectrum of second wavelengths, a power supply configured to provide a series of electrical current pulses to the LED, and a current controller configured to control a time-averaged chromaticity coordinate of a combination of light emitted from the LED and the pumped material by controlling the series of current pulses provided to the LED.
摘要:
A display assembly includes a display member and backlight member. The backlight member has a light source and is bonded directly to the display member. The backlight member can be bonded directly to a display area of the display member, and an optically transparent adhesive can be used to bond a first surface of the backlight member to a first surface of the display member.
摘要:
A computer system may include a connecting hub having a plurality of docking regions and be configured to provide to each docking region electrical power, a data network interface, a cooling fluid supply and a cooling fluid return; and a plurality of shipping containers that each enclose a modular computing environment that incrementally adds computing power to the system. Each shipping container may include a) a plurality of processing units coupled to the data network interface, each of which include a microprocessor; b) a heat exchanger configured to remove heat generated by the plurality of processing units by circulating cooling fluid from the supply through the heat exchanger and discharging it into the return; and c) docking members configured to releaseably couple to the connecting hub at one of the docking regions to receive electrical power, connect to the data network interface, and receive and discharge cooling fluid.
摘要:
A datacenter cooling apparatus includes a portable housing having lifting and transporting structures for moving the apparatus, opposed sides in the housing, at least one of the opposed sides defining one or more air passage openings arranged to capture warmed air from rack-mounted electronics, opposed ends in the housing, at least one of the opposed ends defining one or more air passage openings positioned to allow lateral passage of captured air into and out of the housing, and one or more cooling coils associated with the housing to receive and cool the captured warm air, and provide the cooled air for circulation into a datacenter workspace.
摘要:
A method of providing utilities to a computer data center is discussed. The method includes initially connecting one or more non-evaporative cooling units to a data center as primary cooling plants, obtaining a government-issued water permit, and after obtaining the government-issued water permit, transitioning primary cooling for the data center to one or more evaporative cooling towers.
摘要:
A power distribution apparatus includes a housing holding a plurality of electrical outlets, a plurality of independent electrical circuits within the housing, and a plurality of cord sets serving the plurality of independent electrical circuits and extending from the housing.
摘要:
Apparatus and associated method and computer program products involve a highly efficient uninterruptible power distribution architecture to support modular processing units. As an illustrative example, a modular processing unit includes an corresponding uninterruptible power system in which only one AC-to-DC rectification occurs between the utility AC grid and the processing circuit (e.g., microprocessor) loads. In an illustrative data center facility, a power distribution architecture includes a modular array of rack-mountable processing units, each of which has processing circuitry to handle network-related processing tasks. Associated with each modular processing unit is an uninterruptible power supply (UPS) to supply operating power to the network processing circuitry. Each UPS includes a battery selectively connectable across a DC bus, and a AC-to-DC rectifier that converts an AC input voltage to a single output voltage on the DC bus. The regulated DC bus voltage may be close to the battery's fully charged voltage.
摘要:
A method for cooling electronic equipment can include flowing cooling air across a plurality of computer units and into a common warm air plenum located at a first end of the computer units; flowing air from the warm air plenum through one or more cooling units, and into an area located at a second end of the computer units; and controlling a flow rate of air out of the warm air plenum to maintain a predetermined pressure differential between the second end of the computer units and the first end of the computer units.