Abstract:
A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
Abstract:
A method of forming a channel region for a transistor includes forming a layer of silicon germanium (SiGe) above a substrate, forming an oxide layer above the SiGe layer wherein the oxide layer includes an aperture in a channel area and the aperture is filled with a SiGe feature, depositing a layer having a first thickness above the oxide layer and the SiGe feature, and forming source and drain regions in the layer.
Abstract:
Methods are provided for fabricating a semiconductor device. A method comprises forming a layer of a first semiconductor material overlying the bulk substrate and forming a layer of a second semiconductor material overlying the layer of the first semiconductor material. The method further comprises creating a fin pattern mask on the layer of the second semiconductor material and anisotropically etching the layer of the second semiconductor material and the layer of the first semiconductor material using the fin pattern mask as an etch mask. The anisotropic etching results in a fin formed from the second semiconductor material and an exposed region of first semiconductor material underlying the fin. The method further comprises forming an isolation layer in the exposed region of first semiconductor material underlying the fin.
Abstract:
A method of manufacturing semiconductor fins for a semiconductor device may begin by providing a bulk semiconductor substrate. The method continues by growing a layer of first epitaxial semiconductor material on the bulk semiconductor substrate, and by growing a layer of second epitaxial semiconductor material on the layer of first epitaxial semiconductor material. The method then creates a fin pattern mask on the layer of second epitaxial semiconductor material. The fin pattern mask has features corresponding to a plurality of fins. Next, the method anisotropically etches the layer of second epitaxial semiconductor material, using the fin pattern mask as an etch mask, and using the layer of first epitaxial semiconductor material as an etch stop layer. This etching step results in a plurality of fins formed from the layer of second epitaxial semiconductor material.
Abstract:
A method of forming an abrupt junction device with a semiconductor substrate is provided. A gate dielectric is formed on a semiconductor substrate, and a gate is formed on the gate dielectric. A sidewall spacer is formed on the semiconductor substrate adjacent the gate and the gate dielectric. A thickening layer is formed by selective epitaxial growth on the semiconductor substrate adjacent the sidewall spacer. Raised source/drain dopant implanted regions are formed in at least a portion of the thickening layer. Silicide layers are formed in at least a portion of the raised source/drain dopant implanted regions to form source/drain regions, beneath the silicide layers, that are enriched with dopant from the silicide layers. A dielectric layer is deposited over the silicide layers, and contacts are then formed in the dielectric layer to the silicide layers.
Abstract:
A method of forming a finFET transistor using a sidewall epitaxial layer includes forming a silicon germanium (SiGe) layer above an oxide layer above a substrate, forming a cap layer above the SiGe layer, removing portions of the SiGe layer and the cap layer to form a feature, forming sidewalls along lateral walls of the feature, and removing the feature.
Abstract:
A low thermal budget transistor is fabricated by first forming a gate on a semiconductor substrate. First amorphous regions and first inactive dopant regions are then created in the substrate by ion implantation. Sidewall spacers, which align subsequent implantation steps, are formed adjacent to the gate. Thereafter, second amorphous regions and second inactive dopant regions are created in the substrate by ion implantation. Dopants in the first and second inactive dopant regions are then activated using a low temperature annealing process to create source/drain regions and source/drain extension regions. The aforementioned process simplifies the fabrication of a low thermal budget transistor by dispensing with the requirement to remove the sidewall spacers.
Abstract:
Methods of making fins and semiconductor structures containing fins are provided. The methods involve forming a multi-layer structure over a semiconductor substrate. The multi-layer structure comprises a first layer over the semiconductor substrate, a second layer over the first layer, and a third layer over the second layer. The method also comprises removing upper portions of the semiconductor substrate and portions of the multi-layer structure to form fins of the semiconductor substrate and portions of the multi-layer structure. Further, the method comprises selectively oxidizing the first layer while oxidization of the second layer and the third layer is less than the oxidization of the first layer. The oxidation can be performed before gap fill recess or after gap fill recess.
Abstract:
A method of manufacturing a finned semiconductor device structure is provided. The method begins by providing a substrate having bulk semiconductor material. The method continues by forming a semiconductor fin structure from the bulk semiconductor material, depositing an insulating material overlying the semiconductor fin structure such that the insulating material fills space adjacent to the semiconductor fin structure, and planarizing the deposited insulating material and the semiconductor fin structure to create a flat surface. Thereafter, a replacement gate procedure is performed to form a gate structure transversely overlying the semiconductor fin structure.
Abstract:
Methods are provided for fabricating a semiconductor device. A method comprises forming a layer of a first semiconductor material overlying the bulk substrate and forming a layer of a second semiconductor material overlying the layer of the first semiconductor material. The method further comprises creating a fin pattern mask on the layer of the second semiconductor material and anisotropically etching the layer of the second semiconductor material and the layer of the first semiconductor material using the fin pattern mask as an etch mask. The anisotropic etching results in a fin formed from the second semiconductor material and an exposed region of first semiconductor material underlying the fin. The method further comprises forming an isolation layer in the exposed region of first semiconductor material underlying the fin.