Abstract:
A hollow fiber-form porous membrane of vinylidene fluoride resin having a high crystallinity as represented by a crystal melting enthalpy of at least 58 J/g is produced by forming a composition of a vinylidene fluoride resin having a relatively high weight-average molecular weight of at least 3×105 blended with a plasticizer and a good solvent for vinylidene fluoride resin, melt-extruding the composition into a hollow fiber-form film, and solidifying the film by cooling it from an outside thereof by contact with a cooling liquid inert to vinylidene fluoride resin while crystallizing the vinylidene fluoride resin at an appropriately moderate speed. The resultant hollow fiber-form porous membrane is excellent in mechanical strength represented by tensile strength and elongation at break, and also excellent in chemical resistance, thus being effectively used as a water micro-filtration membrane.
Abstract:
Monofilaments comprising resin compositions which contain 1% by mass or more of a comonomer component (for example, hexafluoropropylene), have an intrinsic viscosity of 1.3 dl/g or more and a melting point of 165° C. or higher and contain a PVDF-based resin. Owing to the above composition and physical properties, the crystallinity and elastic modulus of the PVDF-based resin are altered. As a result, an appropriate flexibility can be imparted to the monofilaments while preventing deterioration in the mechanical properties.
Abstract:
Monofilaments comprising resin compositions which contain 1% by mass or more of a comonomer component (for example, hexafluoropropylene), have an intrinsic viscosity of 1.3 dl/g or more and a melting point of 165° C. or higher and contain a PVDF-based resin. Owing to the above composition and physical properties, the crystallinity and elastic modulus of the PVDF-based resin are altered. As a result, an appropriate flexibility can be imparted to the monofilaments while preventing deterioration in the mechanical properties.
Abstract:
A hollow-fiber porous membrane of vinylidene fluoride resin, satisfying: a ratio Pmax/Pm of at most 2.0 between a maximum pore size Pmax and an average pore size Pm, and a Pm of 0.13 μm-0.25 μm, according to the half-dry/bubble point method (ASTM F316 and ASTM E1294); a coefficient of variation in outer surface pore size of at most 70%, and a porosity of 75-90%. The hollow-fiber porous membrane has a moderate average pore size, has a pore size distribution which is uniform as a whole and also on the outer surface, and has a high porosity, so that it shows not only a good pure water permeability but also retains a good water permeability even in continuous filtration of cloudy water. The hollow-fiber porous membrane is produced through a process which includes: melt-extruding a vinylidene fluoride resin together with a plasticizer and a good solvent therefor into a hollow-fiber film, cooling and solidifying the film, extracting the plasticizer and good solvent, omitting a heat-treatment for crystallization, and stretching the hollow-fiber after the extraction at a limited temperature range of 80-95° C. which is higher than a conventional stretching temperature.
Abstract:
A porous membrane of vinylidene fluoride resin, having two major surfaces sandwiching a certain thickness, including a dense layer which governs filtration performance on the one major surface side and a sparse layer which contributes to reinforcement on the other opposite major surface side, and having an asymmetrical gradient network texture including pore sizes which increase continuously from the one major surface to the other opposite major surface, wherein the dense layer includes a 7 μm-thick portion contiguous to the one major surface showing a porosity A1 of at least 50%, and the one major surface shows a pore size of at most 0.30 μm. The vinylidene-fluoride-resin porous membrane is generally useful as a porous membrane for separation and particularly exhibits good water-permeation-rate retentivity even in continuous filtration of cloudy water. The vinylidene-fluoride-resin porous membrane is produced by a process including: melt-extrusion of a composition obtained by adding to vinylidene fluoride resin of a large molecular weight a relatively large amount of a polyester plasticizer which is mutually soluble with the resin and provides the resultant mixture with a crystallization temperature that is substantially identical to that of the vinylidene fluoride resin alone to form film, followed by cooling from one side of the film to solidify the film and extracting the plasticizer.
Abstract:
The disclosed subject matter provides a composite semiconductor device which can include a common substrate, a first semiconductor light emitting structure, and a second semiconductor light emitting structure. The first semiconductor light emitting structure can include an epitaxial grown layer containing a light emitting layer formed on part of the common substrate either directly or via a bonding layer. The second semiconductor light emitting structure can be provided in a notch at at least one location to which the epitaxial grown layer is not bonded, or in a recess formed in the notch at one location. The disclosed subject matter also provides a method of manufacturing a composite semiconductor device having the above-described and other structures.
Abstract:
A hollow-fiber porous membrane, comprising a hollow fiber-form porous membrane of vinylidene fluoride resin providing: a ratio F (L=200 mm, v=70%)/Pm4 of at least 7×105 (m/day·μm4), wherein the ratio F (L=200 mm, v=70%)/Pm4 denotes a ratio between F (L=200 mm, v=70%) which is a value normalized to a porosity v=70% of a water permeation rate F (100 kPa, L=200 mm) measured at a test length L=200 mm under the conditions of a pressure difference of 100 kPa and a water temperature of 25° C. and a 4-th order value Pm4 of an average pore size Pm. The hollow-fiber porous membrane has an average pore size smaller than before leading to an improved ability of removing fine particles, while suppressing the lowering in water permeability. The hollow-fiber porous membrane is produced by melt-extrusion and low-temperature cooling of a starting composition including a resin material containing an ultra-high molecular weight resin component in a larger amount than before, and increased amounts of plasticizer and good solvent.
Abstract:
There is provided a porous hollow fiber of vinylidene fluoride resin which has a water permeation rate that is large per fiber and little dependent on the length, has a large treatment capacity per volume of a filtering module, and is therefore suitable as a microfilter element. That is, a porous hollow fiber, comprising a vinylidene fluoride resin having a weight-average molecular weight of at least 3×105, having a water permeation rate F (m3/m2·day) measured at a pressure difference of 100 kPa and at a water temperature of 25° C. in a range of test length L=0.2-0.8 (m) and expressed in a linear relationship with the test length L of: F=C·L+F0 (formula 1) and satisfying requirements (a)-(d) shown below: (a) a average slope C (/day) of: −20≦C≦0, (b) an intercept (basic permeability) F0 (m3/m2·day) of: F0≧30, (c) a relation between F0 (m3/m2·day) and an average pore diameter P (μm) according to half-dry method of F0/P≧300, and (d) an outer diameter of at most 3 mm.
Abstract:
A vinylidene fluoride resin having a weight-average molecular weight as relatively high as 300,000 or higher is mixed with a plasticizer and good solvent for the vinylidene fluoride resin to obtain a composition. A molten extrudate of the composition in a hollow-fiber membrane state is contacted, on its outer side, with a cooling liquid inert to the vinylidene fluoride resin to thereby cool the extrudate. During the solidification, the vinylidene fluoride resin is moderately and mildly crystallized. Thus, a hollow-fiber porous vinylidene fluoride resin membrane is produced which has a high crystallinity represented by an enthalpy of crystal melting 58 J/g or higher. The hollow-fiber porous membrane obtained is excellent in mechanical strength represented by tensile strength and elongation at break and in chemical resistance. It is effectively used as a water microfiltration membrane.
Abstract:
There is provided a porous membrane of vinylidene fluoride resin which has pores of appropriate size and distribution and also excellent mechanical strength represented by tensile strength and elongation at break and is useful as a microfiltration membrane or a separator for batteries. The porous membrane of vinylidene fluoride resin is characterized by the presence in mixture of a crystalline oriented portion and a crystalline non-oriented portion as confirmed by X-ray diffraction, and is produced by subjecting a melt-extruded composition obtained by mixing a vinylidene fluoride resin having a molecular weight distribution which is appropriately broad and high as a whole with a plasticizer and a good solvent for vinylidene fluoride resin, to cooling for solidification from one surface, extraction of the plasticizer and stretching.