Abstract:
An apparatus for inspecting particles and/or pattern defects of an object under inspection. Data processing means obtains information on size of the particles and/or the pattern defects from an intensity of the scattered light detected by the light detecting means by referring to a relationship between an intensity of scattered light from a standard particle and a size of the standard particle, and using a calibration coefficient for compensating for a change in intensity of the light of the illuminating means from a predetermined intensity.
Abstract:
A defect inspection apparatus includes an illumination optical unit for obliquely illuminating an object with a slit-like shaped laser, a first detection optical unit for detecting a first image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a first direction substantially normal to a surface of the object, a second detection optical unit for detecting a second image formed by light reflected from the object by the illumination of the slit-like shaped laser and reflected in a second direction inclined to the normal direction to the surface of the object, an image signal processing unit which processes a signal outputted from the first detection optical unit and a signal outputted from the second detection optical unit, and an output unit which outputs information processed by the image signal processing unit.
Abstract:
A method for detecting defects on a specimen includes mounting a specimen on a table with which is movable, obliquely projecting a laser as a line onto a surface of the specimen, detecting with an image sensor an image of light formed by light reflected from the specimen and passed through a filter which blocks scattered light resulting from repetitive patterns formed on the specimen, processing a signal outputted from the image sensor to extract defects of the specimen, and a displaying information of defects extracted by the signal processor.
Abstract:
A defect inspection method includes radiating an illumination slit-shaped beam having lights substantially parallel to a longitudinal direction to a substrate having circuit patterns in a direction inclined at a predetermined gradient relative to the direction of a line normal to the substrate and inclined at a predetermined gradient on a surface with respect to a group of main straight lines of the circuit patterns with its longitudinal direction oriented almost perpendicularly to a direction of a movement of the substrate. Scattered light reflected by a defect such as a foreign particle existing on the illuminated substrate is received and converted into a detection signal by using an image sensor, and defect judging is effected of an extracted a signal indicating a defect such as a foreign particle on the basis of the detection signal output.
Abstract:
A system and method of inspecting a foreign particle or a defect on a sample are provided. Such a method comprises irradiating light to an object to be inspected; detecting reflected light or scattered light from the object to be inspected irradiated with the light; detecting a signal of the foreign particle or the defect from the detected signal; providing information related to a size of the foreign particle or the defect from the signal of the detected foreign particle or the defect; and outputting information on a display screen a distribution of the size of the foreign particle or defect with information indicating a cause of the distribution of the foreign particle or defect.
Abstract:
Disclosed herein are method of and apparatus for detecting a foreign substance on an object by illuminating said object, detecting via an optical system light reflected from said object and detecting said foreign substance in distinction from a background. The object is exposed to first illumination such that light reflected from said background is suppressed but light reflected from said foreign substance is highlighted relative to the light reflected from said background. The light reflected from said object as a result of said first illumination is detected, thereby obtaining a first detection signal. The object is exposed to second illumination such that light reflected from said background is free from suppression relative to the light reflected from said substance as a result of said second illumination. The light reflected from said object as a result of said second illumination is detected, thereby obtaining a second detection signal. Foreign-substance-highlighting processing is performed on said first detection signal by using said second detection signal, whereby said substance is detected.
Abstract:
Disclosed is an apparatus for detecting particles comprising semiconductor laser drive means for performing feedback control of semiconductor lasers, each thereof incorporating a sensor therewith for monitoring laser-output thereof, by using the output of the sensor, means for holding the feedback voltage, illuminating means including a plurality of optical means disposed to oppose each other so that the laser-outputs from the semiconductor lasers are obliquely applied onto a specimen, and detection means for detecting the light scattered from the particles present on the specimen.
Abstract:
An inspecting apparatus and method including first and second illuminating units for illuminating a surface of a specimen to be inspected with different incident angles and first and second detecting optical units arranged at different elevation angle directions to the surface of the specimen for detecting images of the specimen illuminated by the first and second illuminating units.
Abstract:
The present invention provides an inspection apparatus and inspection method. The inspection apparatus includes a stage mechanism for supporting an object under inspection. A spatial filter is provided in the detection optical system to inspect the object. A printer is used to print the results of the spatial filter. The spatial filter can be provided in the form of a Fourier transformed image.
Abstract:
An inspecting apparatus and method including first and second illuminating units for illuminating a surface of a specimen to be inspected with different incident angles and first and second detecting optical units arranged at different elevation angle directions to the surface of the specimen for detecting images of the specimen illuminated by the first and second illuminating units.