Abstract:
Aspects of the subject technology relate to display circuitry such as backlight control circuitry for operating parallel strings of light-emitting diodes (LEDs). A voltage supply circuit of the backlight control circuitry provides a common supply voltage to the strings of LEDs. Headroom control circuitry samples a residual voltage at the end of each string, determines a minimum of the residual voltages, and provides feedback, based on the determined minimum voltage, to the voltage supply circuit. A headroom control feedback loop may be provided including sampling lines coupled to the second end of each string of LEDs for sampling a residual voltage of each string. Headroom control circuitry may modify the supply voltage based on the minimum residual voltage. Sample-and-hold circuitry may be provided that holds the sampled residual voltages until the voltage supply circuit is ready for an update.
Abstract:
Aspects of the subject technology relate to display of an electronic device. The display includes a backlight unit having a voltage source, a string of light-emitting diodes and a bypass switch for each light-emitting diode in the string. The string of light-emitting diodes can receive, at a first end, a supply voltage from the voltage source. The bypass switch for each light-emitting diode is controllable to pulse-width-modulate that light-emitting diode. The headroom voltage feedback circuit is coupled to a second end of the string.
Abstract:
This application relates to systems, methods, and apparatus for controlling a switching frequency of a boost or flyback converter to be above an audible frequency range when operating the boost or flyback converter in a pulse frequency modulation (PFM) mode. The boost or flyback converter uses one or more switches for converting power for a display panel. In order to boost the switching frequency when operating in the PFM mode, the boost or flyback converter can selectively implement certain current and/or voltage limits for pulses that are generated as a result of the switching. The current and/or voltage limits can be set according to a load of the boost or flyback converter, and a correspondence between the current and/or voltage limits and the loads can be stored in a lookup table accessible to the boost or flyback converter.
Abstract:
A power conversion circuit, such as a buck converter/regulator, includes a feedback loop operatively coupling the output voltage to the controller for the switching mechanism. The feedback loop includes an analog error amplifier that sources current to the controller when the output voltage falls below a predetermined reference voltage and sinks current from the controller when the output voltage rises above a predetermined reference voltage. The feedback loop further includes at least one of a sinking boost circuit that sinks additional current from the controller when the output voltage falls below a low voltage threshold or a sourcing boost circuit that sources additional current to the controller when the output voltage rises above a high voltage threshold. The boost circuits can include analog amplifiers, digital comparators, or a combination thereof.
Abstract:
A power supply with reduced electromagnetic interference (EMI) is described. This power supply includes cascaded stages with switched-mode power-supply circuits that are switched synchronously during operation by switching signals that have a common fundamental frequency. EMI associated with the power supply is reduced by establishing a phase shift between the switching signals in at least two of the stages.
Abstract:
An electronic device may be provided with display circuitry that includes a display timing controller, a backlight driver, a light source, and other associated backlight structures. The backlight control circuitry may generate a control signal having an adjustable duty cycle to the backlight driver. The backlight driver may include a boost converter, a current driver, and backlight control circuitry. The current driver may only be activated when the control signal is high. The backlight control circuitry may output an enable signal to the boost converter. The backlight control circuitry may activate the boost converter a predetermined amount of time before each rising clock edge in the control signal by asserting the enable signal for a longer period of time than when the control signal is high. The control signal and the enable signal may be deasserted at around the same times.
Abstract:
Systems, devices, and methods for a shared matrix of shared row pins and/or column pins between a first array of keys and a second array of lights of a keyboard. A keyboard controller addresses the first array of keys and the second array of lights during a scanning period using the shared row pins and/or column pins. Each key is backlit by one or more lights of the second array of lights that may be individually controlled. The keyboard controller may drive the desired lights of a respective row while detecting key presses of the same row during the row interval using the shared row pins and/or column pins. In some embodiments, the keyboard controller may drive the desired lights of a row during driving interval of the row interval, and scan the keys of the row separately during a sensing interval of the row interval.
Abstract:
One embodiment of a display backlight driver integrated circuit can be configured for operation in at least two different ways. A first method transfers data from an EEPROM to hardware registers prior to regular operation. A second method also transfers data from an EEPROM to registers. However, hardware registers can be overwritten with data accepted from a control bus, prior to regular operation. A keyboard driver IC can detect the presence or absence of a cable to an LED. If the cable is absent, the driver IC will not supply power for the LED. One embodiment of a keyboard and display backlight control system can be configured to allow substantially independent operation.
Abstract:
Power converters can include a plurality of switching devices and a combination of one or more inductors and one or more flying capacitors. Both boost and buck converters may employ such topologies, and can achieve high efficiency and small size in at least some applications, including those with high conversion ratios. A control circuit can generate a first pair of complementary gate drive signals to drive a first complementary switch pairs and a second pair of complementary gate drive signals to drive a second complementary switch pair. The control circuit can vary a phase shift between the first pair of complementary gate drive signals and the second pair of complementary gate drive signals to regulate the flying capacitor voltage.
Abstract:
A device includes a display portion that includes a display housing and a display within the display housing. The device also includes a base portion flexibly coupled to the display portion and comprising a glass member defining a keyboard region configured to receive user input, a first haptic actuator configured to produce a first haptic output at a first area of the keyboard region, and a second haptic actuator configured to produce a second haptic output at a second area of the keyboard region that is different from the first area.