Abstract:
An example graphical programming interface system includes a processor. A grid matrix defined by a plurality of coordinate axes, having selectable matrix positions is displayed on a display device. Multiple movable object icons, each representing an object having a predefined output sound are also displayed on the display device. In one aspect, a single object data file is associated with each matrix position on said grid matrix. In this aspect, once a user places an object icon on a matrix position, the processor causes the predefined output sound associated with the object icon in accordance with the object data file associated with the matrix position at which the object icon is placed, and outputs the processed sound to an output device. This allows a user to program musical sequences by placing one or more object icons each on the selectable matrix positions.
Abstract:
According to one embodiment, a media system communicates with an aggregate device that includes multiple media output devices. When providing media data for presentation, the system adjusts for device clock drift by resampling the media data provided to a media output device based at least in part on a device clock rate difference between a device clock of one of the media output devices and a device clock of another of the media output devices.
Abstract:
According to one embodiment, a media system communicates with an aggregate device that includes multiple media output devices. When providing media data for presentation, the system adjusts for device clock drift by resampling the media data provided to a media output device based at least in part on a device clock rate difference between a device clock of one of the media output devices and a device clock of another of the media output devices.
Abstract:
Described herein are devices, methods and computer readable media that allow a device with a touch-screen to respond to different pressure inputs. For example, while the device displays a plurality of media controls on the touch screen, it detects a gesture at a location corresponding to a respective medial control. In accordance with a determination that the gesture meets first pressure criteria, the device performs a first media operation associated with the respective media control; and in accordance with a determination that the gesture meets second pressure criteria different from the first pressure criteria, the device performs a second media operation associated with a second media control that is different from the first media operation.
Abstract:
In some implementations, a computing device can be configured to present a graphical user interface that enables the dynamic authoring of music by a user of the computing device. The computing device can present a grid of cells, where each cell represents a music segment. The cells can be configured to playback the music segment once or playback the music segment in a repeating loop. The user can select (e.g., touch) one or more cells in the grid to cause the corresponding music segment to play. While playing selected cells, the user can provide input selecting various musical effects to apply to the playing music. The user can record a dynamically selected sequence of cells and musical effects to create an original musical product.
Abstract:
According to one embodiment, a media system communicates with an aggregate device that includes multiple media output devices. When providing media data for presentation, the system adjusts for device clock drift by resampling the media data provided to a media output device based at least in part on a device clock rate difference between a device clock of one of the media output devices and a device clock of another of the media output devices.