Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be coupled to non-near-field communications circuitry such as cellular telephone transceiver circuitry or wireless local area network circuitry. When operated at non-near-field communication frequencies, the antenna structures may be configured to serve as one or more inverted-F antennas or other antennas for supporting far field wireless communications. Proximity sensor circuitry and near-field communications circuitry may also be coupled to the antenna structures. When operated at proximity sensor frequencies, the antenna structures may be used in forming capacitive proximity sensor electrode structures. When operated at near-field communications frequencies, the antenna structures may be used in forming an inductive near-field communications loop antenna.
Abstract:
An electronic device may be provided with a primary antenna that is used for transmitting and receiving signals and a secondary antenna that is used for receiving signals. The primary and secondary antennas may be used together in a diversity arrangement when receiving signals. The electronic device may have a transceiver. A phase shifter may be interposed between the transceiver and the secondary antenna. Control circuitry may select a communications band of interest for transmitting signals with the primary antenna. The control circuitry can adjust the phase shifter in real time based on which communications band of interest has been selected for transmission with the primary antenna. The phase shifter may impose a phase shift on signals carried between the secondary antenna and the transceiver that ensures that primary antenna efficiency degradation associated with the presence of the secondary antenna in the vicinity of the primary antenna is avoided.
Abstract:
An electronic device may include balance-fed antenna structures that do not have direct paths to ground. The antenna structures may serve as a Global Positioning System (GPS) antenna and may have a dipole structure having a first and second antenna resonating element arms. The antenna structures may include a conductive path that conveys antenna signals between a first feed terminal on the first antenna resonating element arm and a transmission line. The conductive path may overlap with the second antenna resonating element arm such that current flow through the conductive path induces corresponding current flow in the second antenna resonating element arm. The antenna structures may include an impedance matching short-circuit stub path that couples the first antenna resonating element arm to the second antenna resonating element arm. Choke inductors may be used to help block indirect paths from the antenna structures to ground through adjacent circuitry.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may have hybrid antennas that include slot antenna resonating elements formed from slots in a ground plane and planar inverted-F antenna resonating elements. The planar inverted-F antenna resonating elements may each have a planar metal member that overlaps one of the slots. The slot of each slot antenna resonating element may divide the ground plane into first and second portions. A return path and feed may be coupled in parallel between the planar metal member and the first portion of the ground plane. Tunable components such as tunable inductors may be used to tune the hybrid antennas. A tunable inductor may bridge the slot in hybrid antenna, may be coupled between the planar metal member of the planar inverted-F antenna resonating element and the ground plane, or multiple tunable inductors may bridge the slot on opposing sides of the planar inverted-F antenna resonating element.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may be provided with a primary antenna that is used for transmitting and receiving signals and a secondary antenna that is used for receiving signals. The primary and secondary antennas may be used together in a diversity arrangement when receiving signals. The electronic device may have a transceiver. A phase shifter may be interposed between the transceiver and the secondary antenna. Control circuitry may select a communications band of interest for transmitting signals with the primary antenna. The control circuitry can adjust the phase shifter in real time based on which communications band of interest has been selected for transmission with the primary antenna. The phase shifter may impose a phase shift on signals carried between the secondary antenna and the transceiver that ensures that primary antenna efficiency degradation associated with the presence of the secondary antenna in the vicinity of the primary antenna is avoided.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.