Abstract:
An integrated circuit is provided with error detection circuitry and error repair circuitry. Error tolerance circuitry is responsive to a control parameter to selectively disable the error repair circuitry. The control parameter is dependent on the processing performed within the circuit. For example, the control parameter may be generated in dependence upon the program instruction being executed, the output signal value which is in error, the previous behavior of the circuit or in other ways.
Abstract:
A method of reconfiguration and a reconfigurable circuit architecture comprising a configurable volatile storage circuit and Non-Volatile Memory circuit elements; wherein the Non-Volatile memory circuit elements store multiple bit states for re-configuration, the multiple bit states being read from the Non-Volatile memory circuit elements and written into the configurable volatile storage circuit for reconfiguration. The Non-Volatile Memory circuit elements and the configurable volatile storage circuit are provided on a common die.
Abstract:
An apparatus 2 comprises at least three processing circuits 4 to perform redundant processing of a common thread of program instructions. Error detection circuitry 16 is provided comprising a number of comparators 22 for detecting a mismatch between signals on corresponding signal nodes 20 in the processing circuits 4. When a comparator 22 detects a mismatch, this triggers a recovery process. The error detection circuitry 16 generates an unresolvable error signal 36 indicating that a detected area is unresolvable by the recovery process when, during the recovery process, a mismatch is detected by one of the proper subset 34 of the comparators 22. By considering fewer comparators 22 during the recovery process than during normal operation, the chances of unrecoverable errors being detected can be reduced, increasing system availability.
Abstract:
The present techniques generally relate to a computer implemented method of initiating autonomous drive of a vehicle when the drive of the vehicle is under the control of a user, the method comprising: detecting or predicting the start of a user sneezing episode; and initiating autonomous drive of the vehicle during the user sneezing episode. The method may additionally involve, after the initiating the autonomous drive of the vehicle, determining the end of the user sneezing episode, ending the autonomous drive of the vehicle and reverting the drive of the vehicle back to the control of the user. All of this may be done without the user of the vehicle being aware of the autonomous drive of the vehicle.
Abstract:
A data processing apparatus has a plurality of storage elements residing at different physical locations within the apparatus, and fault history circuitry for detecting local transient faults occurring in each storage element, and for maintaining global transient fault history data based on the detected local transient faults. Analysis circuitry monitors the global transient fault history data to determine, based on predetermined criteria, whether the global transient fault history data is indicative of random transient faults occurring within the data processing apparatus, or is indicative of a coordinated transient fault attack. The analysis circuitry is then configured to initiate a countermeasure action on determination of a coordinated transient fault attack. This provides a simple and effective mechanism for distinguishing between random transient faults that may naturally occur, and a coordinated transient fault attack that may be initiated in an attempt to circumvent the security of the data processing apparatus.
Abstract:
Briefly, example methods, apparatuses, and/or articles of manufacture are disclosed that may be implemented, in whole or in part, to determine indicators of potential errors in a multi-processing core lockstep computing device comprising a plurality of processing cores, based, at least in part, on observations of output signals generated by at least two processing cores of the plurality of processing cores. A built-in self-test (BIST) procedure may then be based, at least in part, on the determining indicators.
Abstract:
An integrated circuit is provided with error detection circuitry and error repair circuitry. Error tolerance circuitry is responsive to a control parameter to selectively disable the error repair circuitry. The control parameter is dependent on the processing performed within the circuit. For example, the control parameter may be generated in dependence upon the program instruction being executed, the output signal value which is in error, the previous behavior of the circuit or in other ways.
Abstract:
An integrated circuit is provided with error detection circuitry and error repair circuitry. Error tolerance circuitry is responsive to a control parameter to selectively disable the error repair circuitry. The control parameter is dependent on the processing performed within the circuit. For example, the control parameter may be generated in dependence upon the program instruction being executed, the output signal value which is in error, the previous behavior of the circuit or in other ways.