Abstract:
An immersion lithographic apparatus typically includes a fluid handling system. The fluid handling system generally has a two-phase fluid extraction system configured to remove a mixture of gas and liquid from a given location. Because the extraction fluid comprises two phases, the pressure in the extraction system can vary. This pressure variation can be passed through the immersion liquid and cause inaccuracy in the exposure. To reduce the pressure fluctuation in the extraction system, a buffer chamber may be used. This buffer chamber may be connected to the fluid extraction system in order to provide a volume of gas which reduces pressure fluctuation. Alternatively or additionally, a flexible wall may be provided somewhere in the fluid extraction system. The flexible wall may change shape in response to a pressure change in the fluid extraction system. By changing shape, the flexible wall can help to reduce, or eliminate, the pressure fluctuation.
Abstract:
A lithographic projection apparatus is disclosed that includes a table, a shutter member, a fluid handling structure, and a fluid extraction system. The fluid handling structure may be configured to supply and confine liquid between a projection system and (i) a substrate, or (ii) the table, or (iii) a surface of the shutter member, or (iv) a combination selected from (i)-(iii). The surface of the shutter member may adjoin and be co-planar with a surface of the table. The surfaces of the shutter member and the table may be spaced apart by a gap. The fluid extraction system may be configured to remove liquid from the gap.
Abstract:
A radiation source comprising a fuel source configured to deliver fuel to a location from which the fuel emits EUV radiation. The radiation source further comprises an immobile fuel debris receiving surface provided with a plurality of grooves. The grooves have orientations which are arranged to direct the flow of liquid fuel under the influence of gravity in one or more desired directions.
Abstract:
A fluid handling structure for a lithographic apparatus is disclosed, the fluid handling structure successively has, at a boundary from a space configured to contain immersion fluid to a region external to the fluid handling structure: an elongate opening or a plurality of openings arranged in a first line that, in use, are directed towards a substrate and/or a substrate table configured to support the substrate; a gas knife device having an elongate aperture in a second line; and an elongate opening or a plurality of openings adjacent the gas knife device.
Abstract:
An immersion lithographic apparatus is described in which a two-phase flow is separated into liquid-rich and gas-rich flows by causing the liquid-rich flow to preferentially flow along a surface.
Abstract:
A fluid handling structure for a lithographic apparatus is disclosed, the fluid handling structure successively has, at a boundary from a space configured to contain immersion fluid to a region external to the fluid handling structure: an elongate opening or a plurality of openings arranged in a first line that, in use, are directed towards a substrate and/or a substrate table configured to support the substrate; a gas knife device having an elongate aperture in a second line; and an elongate opening or a plurality of openings adjacent the gas knife device.
Abstract:
An immersion lithographic apparatus is disclosed that includes a fluid handling system configured to confine immersion liquid to a localized space between a final element of a projection system and a substrate and/or table and a gas supplying device configured to supply gas with a solubility in immersion liquid of greater than 5×10−3 mol/kg at 20° C. and 1 atm total pressure to an area adjacent the space.
Abstract:
A liquid confinement system for use in immersion lithography is disclosed in which the meniscus of liquid between the liquid confinement system and the substrate is pinned substantially in place by a meniscus pinning feature. The meniscus pinning feature comprises a plurality of discrete outlets arranged in a polygonal shape.
Abstract:
A fluid handling structure for a lithographic apparatus, the fluid handling structure having, at a boundary from a space configured to contain immersion fluid to a region external to the fluid handling structure: a meniscus pinning feature to resist passage of immersion fluid in a radially outward direction from the space; a plurality of gas supply openings in a linear array at least partly surrounding and radially outward of the meniscus pinning feature; and a gas recovery opening radially outward of the plurality of gas supply openings in a linear array.
Abstract:
A lithographic projection apparatus is disclosed that includes a table, a shutter member, a fluid handling structure, and a fluid extraction system. The fluid handling structure may be configured to supply and confine liquid between a projection system and (i) a substrate, or (ii) the table, or (iii) a surface of the shutter member, or (iv) a combination selected from (i)-(iii). The surface of the shutter member may adjoin and be co-planar with a surface of the table. The surfaces of the shutter member and the table may be spaced apart by a gap. The fluid extraction system may be configured to remove liquid from the gap.