Abstract:
A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.
Abstract:
Aspects of the subject disclosure may include, for example, an antenna structure that includes a feed point that facilitates coupling to a dielectric core that supplies electromagnetic waves to the feed point, and a dielectric antenna coupled to the feed point for receiving the electromagnetic waves, the dielectric antenna including an antenna lens that operates as an aperture of the dielectric antenna, the antenna lens having a structure that adjusts a propagation of the electromagnetic waves in the dielectric antenna to reduce a cross section of far-field wireless signals generated by the dielectric antenna. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, receiving, by a network element of a distributed antenna system, a reference signal, an ultra-wideband control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device. The instructions in the ultra-wideband control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment. The reference signal is received at an in-band frequency relative to the control channel. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, receiving, by a network element of a distributed antenna system, a reference signal and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device. The element converts the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment based on an analog signal processing of the first modulated signal and utilizing the reference signal to reduce distortion during the converting. The network element wirelessly transmits the first modulated signal at the first spectral segment to the mobile communication device. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, an antenna support includes a stabilizer configured to align an antenna on a projection of a longitudinal tangent of a transmission line along a horizontal plane. A holder is configured to secure the stabilizer to the transmission line. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a connector that includes a first port configured to receive electromagnetic waves guided by a first dielectric core of a first transmission medium. A waveguide is configured to guide the electromagnetic waves from the first port to a second port. The second port is configured to transmit the electromagnetic waves to a second dielectric core of a second transmission medium. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for generating first electromagnetic waves and directing instances of the first electromagnetic waves to an interface of a transmission medium to induce propagation of second electromagnetic waves substantially having a non-fundamental wave mode. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a network termination includes a downstream channel modulator modulates downstream data into downstream channel signals to convey the downstream data via a guided electromagnetic wave that is bound to a transmission medium of a guided wave communication system. A host interface sends the downstream channel signals to the guided wave communication system and receives upstream channel signals corresponding to upstream frequency channels from the guided wave communication system. An upstream channel demodulator demodulates upstream channel signals into upstream data. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a client node device having a radio configured to wirelessly receive downstream channel signals from a communication network. An access point repeater (APR) launches the downstream channel signals on a guided wave communication system as guided electromagnetic waves that propagate along a transmission medium and to wirelessly transmit the downstream channel signals to at least one client device. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a network termination includes a downstream channel modulator modulates downstream data into downstream channel signals to convey the downstream data via a guided electromagnetic wave that is bound to a transmission medium of a guided wave communication system. A host interface sends the downstream channel signals to the guided wave communication system and receives upstream channel signals corresponding to upstream frequency channels from the guided wave communication system. An upstream channel demodulator demodulates upstream channel signals into upstream data. Other embodiments are disclosed.