Abstract:
Methods of making a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal. Methods include making a poly(L-lactide) material for a stent with uniformly distributed L-lactide monomer through control of polymerization conditions during PLLA synthesis, control of post-processing conditions, or both.
Abstract:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
Methods of treating with a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal.
Abstract:
Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
Abstract:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
Methods of treating with a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal.
Abstract:
Methods of making biodegradable polymeric devices, such as stents, with one or more modifications to alter the degradation rate, and the biodegradable polymeric devices are described. Modifications include blending of two polymers, one with a different degradation rate, inclusion of additives to alter the degradation rate, and the use of polymers of a high polydispersity.
Abstract:
Methods of making a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal. Methods include making a poly(L-lactide) material for a stent with uniformly distributed L-lactide monomer through control of polymerization conditions during PLLA synthesis, control of post-processing conditions, or both.
Abstract:
A medical device includes a polymer stent crimped to a catheter having an expansion balloon. The stent is crimped to the balloon by a process that includes heating the stent to a temperature below the polymer's glass transition temperature to improve stent retention without adversely affecting the mechanical characteristics of the stent when later deployed to support a body lumen. A variable diameter sheath with a central portion that prevents expansion of the stent when the balloon is pressurized and larger diameter ends is disposed over the crimped stent-balloon assembly. The balloon is pressurized and the larger diameter ends of the sheath allow the balloon beyond the ends of the stent to expand. The balloon is then depressurized.
Abstract:
A medical device includes a polymer stent crimped to a catheter having an expansion balloon. The stent is crimped to the balloon by a process that includes heating the stent to a temperature below the polymer's glass transition temperature to improve stent retention without adversely affecting the mechanical characteristics of the stent when later deployed to support a body lumen. A variable diameter sheath with a central portion that prevents expansion of the stent when the balloon is pressurized and larger diameter ends is disposed over the crimped stent-balloon assembly. The balloon is pressurized and the larger diameter ends of the sheath allow the balloon beyond the ends of the stent to expand. The balloon is then depressurized.