Abstract:
An attenuation reduction grounding structure of differential-mode signal transmission lines of a flexible circuit board includes a flexible substrate on which at least one pair of differential-mode signal lines, at least one grounding line, a covering insulation layer, and a thin metal foil layer are formed. At least one via hole extends through the thin metal foil layer and the covering insulation layer and corresponds to a conductive contact zone of the grounding line. The via hole is filled with a conductive paste layer to electrically connect the thin metal foil layer to the conductive contact zone of the grounding line to provide an excellent grounding arrangement. The thin metal foil layer includes a plurality of openings formed at locations corresponding to top angles of the differential-mode signal lines.
Abstract:
A connection structure for a flexible circuit cable includes a flexible circuit cable that has a flexible circuit substrate having a first end bonded to a soldering stage of the connector housing with first finger pad conductive contacts of conductive lines of the flexible circuit cable respectively corresponding to cable soldering sections of metal conductive terminals of the connector. A soldering layer is formed between a metal coating layer of the first finger pad conductive contact of each of the conductive lines and the cable soldering section of the corresponding metal conductive terminals to set the conductive lines of the flexible circuit cable in electrical connection with the metal conductive terminals of the connector.
Abstract:
A circuit board structure that includes a resin-based conductive adhesive layer is disclosed, in which a conductive layer is arranged between a first circuit board and a second circuit board. The conductive layer includes a first conductive paste layer and the resin-based conductive adhesive layer is formed on the first conductive paste layer. The resin-based conductive adhesive layer contains a sticky resin material and a plurality of conductive particles distributed in the sticky resin material. The plurality of conductive particles establish an electrical connection between the first conductive paste layer and the resin-based conductive adhesive layer.
Abstract:
A signal attenuation reduction structure for a flexible circuit board includes at least one conductive paste coating zone formed on surfaces of signal lines and an insulation layer formed on a dielectric layer of the flexible circuit board such that the conductive paste coating zone corresponds to at least one signal line or covers a plurality of signal lines. A resin-based conductive adhesive layer is formed on surfaces of the insulation layer and the conductive paste coating zone of the flexible circuit board. The resin-based conductive adhesive layer is pressed to bond between the conductive paste coating zone and a top insulation layer such that the conductive paste coating zone and the resin-based conductive adhesive layer achieve electrical connection therebetween.
Abstract:
A circuit board structure with selectively corresponding ground layers includes a first ground layer, a second ground layer, and a dielectric layer arranged between the first ground layer and the second ground layer to define a ground layer height difference between the first ground layer and the second ground layer. The first ground layer includes a plurality of non-electromagnetic shield areas. The circuit board includes a plurality of conductor wires formed thereon and selectively classified and divided into a first group of conductor wires and the second group of conductor wires. The first-group conductor wires are arranged to correspond to and electromagnetically couple to the first ground layer, and the second-group conductor wires are arranged to correspond to and electromagnetically couple to the second ground layer through the non-electromagnetic shield areas respectively, so that impedance value control is achieved.
Abstract:
Disclosed is a soldering structure for mounting at least one connector on a flexible circuit board. The connector includes SMD pins and solder-dipping pins. The flexible circuit board has a connector mounting section having a component surface on which SMD soldering zones and solder-dipping pin holes are formed. A reinforcement plate is coupled to a reinforcement bonding surface of the flexible circuit board. The reinforcement plate has through holes corresponding to the solder-dipping pin holes of the flexible circuit board. The SMD pins of the connector are respectively soldered to the SMD soldering zones of the flexible circuit board, and the solder-dipping pins of the connector are respectively inserted through the solder-dipping pin holes of the flexible circuit board and the through holes of the reinforcement plate to the soldering surface of the reinforcement plate to be soldered with a solder material.