Abstract:
Disclosed is an attenuation reduction structure for high-frequency connection pads of a circuit board with an insertion component. The circuit board includes at least one pair of differential mode signal lines formed thereon. A substrate has upper and lower surfaces respectively provided with at least one pair of upper connection pads and lower connection pads. A first metal layer is formed on the lower surface of the substrate. The first metal layer includes an attenuation reduction grounding pattern structure. The attenuation reduction grounding pattern structure includes a hollow area and at least one protruded portion. The protruded portion extends from the first metal layer in a direction toward the lower connection pads.
Abstract:
An attenuation reduction structure of a circuit board includes an expanded thickness formed between high frequency signal contact pads and a grounding layer of the circuit board. The expanded thickness is greater than a reference thickness between the grounding layer and high frequency signal lines. The circuit board is made of polyethylene terephthalate (PET) or polyimide (PI). Alternatively, a rigid board including resin and fibrous material or a rigid-flex board is used. The circuit board can be a single-layer circuit board or a multi-layer board formed by combining at least two single-layer circuit boards. A thickness-expanding pad is mounted between the high frequency signal contact pads and the grounding layer or the thickness of a portion of a bonding layer of the circuit board is increased to provide an expanded thickness.
Abstract:
An attenuation reduction grounding structure of differential-mode signal transmission lines of a flexible circuit board includes a flexible substrate on which at least one pair of differential-mode signal lines, at least one grounding line, a covering insulation layer, and a thin metal foil layer are formed. At least one via hole extends through the thin metal foil layer and the covering insulation layer and corresponds to a conductive contact zone of the grounding line. The via hole is filled with a conductive paste layer to electrically connect the thin metal foil layer to the conductive contact zone of the grounding line to provide an excellent grounding arrangement. The thin metal foil layer includes a plurality of openings formed at locations corresponding to top angles of the differential-mode signal lines.
Abstract:
A connection structure for a flexible circuit cable includes a flexible circuit cable that has a flexible circuit substrate having a first end bonded to a soldering stage of the connector housing with first finger pad conductive contacts of conductive lines of the flexible circuit cable respectively corresponding to cable soldering sections of metal conductive terminals of the connector. A soldering layer is formed between a metal coating layer of the first finger pad conductive contact of each of the conductive lines and the cable soldering section of the corresponding metal conductive terminals to set the conductive lines of the flexible circuit cable in electrical connection with the metal conductive terminals of the connector.
Abstract:
A signal attenuation reduction structure for a flexible circuit board includes at least one conductive paste coating zone formed on surfaces of signal lines and an insulation layer formed on a dielectric layer of the flexible circuit board such that the conductive paste coating zone corresponds to at least one signal line or covers a plurality of signal lines. An anisotropic conductive film is formed on surfaces of the insulation layer and the conductive paste coating zone of the flexible circuit board. The anisotropic conductive film is pressed to bond between the conductive paste coating zone and a shielding layer such that the conductive paste coating zone and the shielding layer achieve electrical connection therebetween in a vertical direction through the anisotropic conductive film.
Abstract:
A signal attenuation reduction structure for a flexible circuit board includes a conductive paste coating zones formed on surfaces of high-frequency signal lines and an insulation layer formed on a dielectric layer of the flexible circuit board such that the conductive paste coating zone corresponds to a pair of high-frequency signal lines or covers a plurality of pairs of the high-frequency signal lines. An anisotropic conductive film is formed on surfaces of the insulation layer and the conductive paste coating zone of the flexible circuit board. The anisotropic conductive film is pressed to bond between the conductive paste coating zone and a shielding layer such that the conductive paste coating zone and the shielding layer achieve electrical connection therebetween in a vertical direction through the anisotropic conductive film.
Abstract:
An interconnecting conduction structure for electrically connecting conductive traces of a lapped flexible circuit board is disclosed. The lapped flexible circuit board includes a first flexible circuit board and a second flexible circuit board. A through hole is formed in the second flexible circuit board and an interconnecting conduction member is filled in the through hole of the second flexible circuit board. The interconnecting conduction member is electrically connected to a second solder pad of the second flexible circuit board and a first solder pad of the first flexible circuit board in order to formed a lapped connection between conductive traces of the first flexible circuit board and the second flexible circuit board.
Abstract:
A conductive connection structure for a conductive wiring layer of a flexible circuit board includes a first through hole and a second through hole formed in a lamination structure including a conductive wiring layer, a first covering layer, and a second covering layer. The first through hole extends through the first covering layer and the conductive wiring layer. The second through hole extends through the second covering layer. The second through hole is formed at a location corresponding to an exposed zone on a second surface of the conductive wiring layer and communicates with the first through hole. A first conductive paste layer is formed on a surface of the first covering layer and fills in the first through hole to form a pillar portion in the first through hole. The pillar portion has a bottom end forming a curved cap. The exposed zone of the second surface of the conductive wiring layer is at least partially covered by the curved cap.
Abstract:
A differential mode signal transmission module includes a first section having an external connection end on which at least a pair of differential mode signal transmission terminals are formed and includes a grounding terminal, a first differential mode signal terminal, and a second differential mode signal terminal. The extension connection end of the first section forms a counterpart signal terminals corresponding to those of the external connection end. At least one first conductive connection line is formed on the first section. The conductive connection line connects the grounding terminal of the external connection end of the first section to a collective grounding point. The extension connection end of the first section is connected to an extension section. The extension section is further connected to a second section opposite to the first section. The extension section includes at least one slit line in order to form a bundled section. The first section, the second section, and the extension section include at least one fold line.
Abstract:
Disclosed are a method and a structure of penetration and combination for a flexible circuit board with a hinge assembly. A pre-formed flexible circuit board is processed by taking a pre-folding line as a center line to fold a connection section of the flexible circuit board toward the terminal distribution section. Then, the connection section is rolled in a direction toward the terminal distribution section so as to make the connection section forming a rolled body. The rolled body is then put through the bore of the hinge assembly to have the rolled body completely extend through the bore of the hinge assembly so that the extension section of the flexible circuit board is positioned in the bore of the hinge assembly and the first end and the second end are respectively located at opposite sides of the bore of the hinge assembly.