Abstract:
A runflat radial ply pneumatic tire 10 has a carcass 30 which has a pair of sidewalls 20, each sidewall being reinforced with at least two sidewall fillers or runflat inserts 42, 46 and at least two cord reinforced plies 38, 40 and a bead core 26. The tire has one or more reinforcing belts 36. Each sidewall has at least one ply 38 or 40 reinforced with cords, the cords have a modulus E of X, X being at least 10 GPa. At least one ply has a turnup end 32 wrapped around the bead core 26. A second ply 38 or 40 is reinforced with substantially inextensible cords having a modulus E greater than X of the cords of the other ply. The second ply 38 or 40 is spaced from the first ply 38 or 40 by the second filler or runflat insert in the sidewall 20.
Abstract:
A method for making a knotless bead bundle, a bead bundle made according to the method, and a tire made using the knotless bead bundle are provided. In the method a bead ring is made using a plurality of annular turns of wire as is conventional in the art, and the annular turns of wire are wrapped with cord, tape, or other conventional wrapping material which is held on the bead ring without using knots. The wrap is held on the bead ring by using a tie down area that is made by forming a loop in the wrapping material, holding the loop in place by a number of close turns of wrap on the bead ring while leaving a first end of the wrapping material free, wrapping the bead ring 360.degree. around the ring, passing a second end of the wrapping material through the loop, closing the loop by pulling the first end of the wrapping material whereby closing the loop pulls the second end of the wrapping material under the close turns of wrapping material. The ends of the wrap are then cut flush with the close turns of wrap. A tire made using the bead bundle of the invention durability. demonstrates improved uniformity, stability and
Abstract:
A tire 10 has a composite ply 40. The composite ply 40 has a primary ply 40A reinforced with parallel inextensible cords 41 and a pair of ply extensions 40B having synthetic cords. The method of manufacturing the tire 10 is described. The tire 10 can be made as a runflat type tire.
Abstract:
A runflat radial ply pneumatic tire 10 has a carcass 30 which has a pair of sidewalls 20, each sidewall being reinforced with at least two sidewall fillers or runflat inserts 42, 46 and at least two cord reinforced plies 38, 40 and a bead core 26. The tire has one or more reinforcing belts 36. Each sidewall has at least one ply 38 or 40 reinforced with cords, the cords have a modulus E of X, X being at least 10 GPa. At least one ply has a turnup end 32 wrapped around the bead core 26. A first ply 38 or 40 is reinforced with substantially inextensible cords having a modulus E greater than X of the cords of the other ply. The second ply 38 or 40 is spaced from the first ply 38 or 40 by the second filler or runflat insert in the sidewall 20.
Abstract:
A runflat radial ply passenger or light truck pneumatic tire 10 has a carcass 30 reinforced with at least one sidewall insert or filler 42 and one substantially inextensible cord reinforced ply 38, the ply being wrapped about two bead cores 26 and located radially inward of a belt reinforcing structure 36. The sidewall insert or filler 42 is located radially inward of the ply 38. The cord 43 has a minimum modulus E of 10 Gpa and is generally inextensible and less heat sensitive than conventional synthetic cords used in passenger and light truck tires. In one embodiment the ply cords 43 are aramid in another embodiment the cords 43 are steel
Abstract:
An elastomeric composite structure 45 having two arrays of parallel cords 41, 43, each array of cords 41,43 being of different modulus or percent elongation. The array of cords 41,43 are spaced and provide different bending stiffness dependent on the direction of the applied load.
Abstract:
A method and apparatus for manufacturing a strip of ply or belt stock reinforced with steel monofilaments fed from a plurality of reels (60, 60', 60") mounted on the spindles (54) of a reel support structure (18). The article of manufacture which results from the method is a uniform strip of reinforced ply or belt stock of higher epi, smaller gauge and fewer splices than possible with prior method and apparatus.
Abstract:
A method and apparatus for manufacturing a strip of ply or belt stock reinforced with steel monofilaments fed from a plurality of reels (60,60', 60") mounted on the spindles (54) of a reel support structure (18). The article of manufacture which results from the method is a uniform strip of reinforced ply or belt stock of higher epi, smaller gauge and fewer splices than possible with prior method and apparatus. A plurality of the reels for feeding the monofilaments are mounted on a spindle secured at one end, with friction means (64,66) disposed between each of the reels located adjacent to each other for applying an axial braking force to each of the reels. A spring biasing means (68) is disposed between each of the reels located adjacent to each other for pressing the friction means (64,66) against the adjacent reels.
Abstract:
The present invention relates to a radial pneumatic tire having a contoured zone located in each of the sidewalls of the tire. The contoured zone improves the sidewalls ply durability and decreases upper sidewall circumferential ply-wire breakage, also known as zipper-break. More particularly, the radial pneumatic tire comprises (1) at least one circumferential reinforcing belt; (2) a pair of sidewalls extending from opposing edges of said reinforcing belt to corresponding tire beads and containing a single reinforcing cord ply that wraps around each bead and having two terminal ends; (3) an inner cavity; (4) a contoured zone, wherein said contoured zone is (a) located between said single reinforcing cord ply and said inner cavity, (b) is circumferentially extending about the axis of the tire, (c) located in a region of each sidewall defined by the area from said reinforcing belt to the terminal ends of said single reinforcing cord ply, and (d) wherein the distance between the single reinforcing cord ply and said inner cavity is greater in the region where the contoured zone is located in comparison to the distance between the single reinforcing cord ply and said inner cavity in the region beneath said reinforcing belt.