Abstract:
An overvoltage battery protection circuit includes a voltage comparator configured to compare a scaled version of a voltage with a voltage reference and indicate an overvoltage condition when the scaled voltage exceeds the voltage reference. The voltage comparator is powered by a first voltage domain. The circuit further includes a first transistor coupled to an output of the voltage comparator and configured to turn on when the voltage comparator indicates the overvoltage condition and generate an overvoltage signal for at least one external device. The circuit further includes a second transistor coupled to the overvoltage signal and configured to turn on when the overvoltage signal is asserted and force the overvoltage signal to remain asserted independent of the first voltage domain. The first and second transistors are powered by a second voltage domain.
Abstract:
A styrenic monomer-diolefin copolymer comprises polystyrenic monomer micro-blocks and polydiolefin micro-blocks, in which the content of styrenic monomer units is 10-80 wt %, the ratio of diolefin units of 1,2-structure is less than 30% in the total diolefin units, and the number-average molecular weight (Mn) of the copolymer is 25,000-500,000. The preparation methods and uses in foam products thereof are also disclosed.
Abstract:
An overvoltage battery protection circuit includes a voltage comparator configured to compare a scaled version of a voltage with a voltage reference and indicate an overvoltage condition when the scaled voltage exceeds the voltage reference. The voltage comparator is powered by a first voltage domain. The circuit further includes a first transistor coupled to an output of the voltage comparator and configured to turn on when the voltage comparator indicates the overvoltage condition and generate an overvoltage signal for at least one external device. The circuit further includes a second transistor coupled to the overvoltage signal and configured to turn on when the overvoltage signal is asserted and force the overvoltage signal to remain asserted independent of the first voltage domain. The first and second transistors are powered by a second voltage domain.
Abstract:
A styrenic monomer-diolefin copolymer comprises polystyrenic monomer micro-blocks and polydiolefin micro-blocks, in which the content of styrenic monomer units is 10-80 wt %, the ratio of diolefin units of 1,2-structure is less than 30% in the total diolefin units, and the number-average molecular weight (Mn) of the copolymer is 25,000-500,000. The preparation methods and uses in foam products thereof are also disclosed.
Abstract:
Systems and methods for determining a location of a wearable electronic device are disclosed. In some aspects, the device includes a position acquisition device and an accelerometer. A hardware processor included in the device may be configured to generally maintain the position acquisition device in a low power state to save power. When a video or image is captured, it may tag the video or image with first location information. Given the inoperative position acquisition device, a current location may not be known. In some aspects, in response to a need for location information, measurements from an accelerometer may be stored. The position acquisition device may also be transitioned to an operative state, and after some time delay, a second location determined. In some aspects, the location of the capture may then be obtained based on the acceleration measurements and the second location.
Abstract:
A styrenic monomer-diolefin copolymer comprises polystyrenic monomer micro-blocks and polydiolefin micro-blocks, in which the content of styrenic monomer units is 10-80 wt %, the ratio of diolefin units of 1,2-structure is less than 30% in the total diolefin units, and the number-average molecular weight (Mn) of the copolymer is 25,000-500,000. The preparation methods and uses in foam products thereof are also disclosed.
Abstract:
A runflat radial ply passenger or light truck pneumatic tire 10 has a carcass 30 reinforced with at least one sidewall insert or filler 42 and one substantially inextensible cord reinforced ply 38, the ply being wrapped about two bead cores 26 and located radially inward of a belt reinforcing structure 36. The sidewall insert or filler 42 is located radially inward of the ply 38. The cord 43 has a minimum modulus E of 10 Gpa and is generally inextensible and less heat sensitive than conventional synthetic cords used in passenger and light truck tires. In one embodiment the ply cords 43 are aramid in another embodiment the cords 43 are steel